Part Number Hot Search : 
25L16 67000 1H471 D024M 1500V MAX13235 1N5239B MRF9180
Product Description
Full Text Search
 

To Download XCM524BC01DR-G Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
 XCM524 Series
600mA Synchronous Step-Down DC/DC Converter + 500mA LDO with Delay Function Voltage Detector
ETR2428-003
GENERAL DESCRIPTION
The XCM524 series is a multi combination module IC which comprises of a 600mA driver transistor built-in synchronous step-down DC/DC converter and a high speed, high current LDO regulator with voltage detector function. The device is housed in small USP-12B01 package which is ideally suited for space conscious applications. The DC/DC converter and the LDO blocks are isolated in the package so that noise interference from the DC/DC to the LDO regulator is minimal. The DC/DC converter block with a built-in 0.42 P-channel MOS driver transistor and 0.52 N-channel MOS switching transistor, designed to allow the use of ceramic capacitors. The DC/DC enables a high efficiency, stable power supply with an output current of 600mA to be configured using only a coil and two capacitors connected externally. The LDO regulator block is precise, low noise, high ripple rejection, low dropout positive voltage regulators with built-in voltage detector. The LDO is also compatible with low ESR ceramic output capacitors. Good output stability is maintained during load fluctuations due to its excellent transient response. The current limiter's fold back circuit also operates as a short circuit protection for the output current. The voltage detector block of the contains delay circuit. The delay time can be controlled by an external capacitor. The detector monitors the input voltage of the voltage regulator.
APPLICATIONS
BD, DVD drives HDD drives Cameras, Video recorders Mobile phones, Smart phones Various general-purpose power supplies
FEATURES
Input Voltage Range : 2.7V ~ 6.0V Output Voltage Options : 0.8V ~ 4.0V (2 ) High Efficiency : 92% (TYP.) Output Current : 600mA (MAX.) Oscillation Frequency : 1.2MHz, 3.0MHz (+15%) Current Limiter Circuit Built-In : Constant Current & Latching Control Methods : PWM PWM/PFM Auto
*Performance depends on external components and wiring on PCB wiring.
Maximum Output Current
TYPICAL APPLICATION CIRCUIT
: 500mA (Limiter 600mA TYP.) (2.5V VROUT 4.9V) Dropout Voltage : 200mV@IROUT=100mA (TYP.) Operating Voltage Range : 2.0V ~ 6.0V Output Voltage Options : 0.9V ~ 5.1V (0.1V increments, 2 ) Detect Voltage Options : 2.0V ~ 5.5V (0.1V increments, 2 ) VR.VD Temperature Stability :100ppm/ (TYP.) High Ripple Rejection : 65dB (@10kHz) Low ESR Capacitor : Ceramic Capacitor Operating Temperature Range : -40 ~ +85 Package : USP-12B01 Environmentally Friendly : EU RoHS Compliant, Pb Free
(TOP VIEW)
1/52
XCM524 Series
PIN CONFIGURATIOIN
PIN No 1 2 3 4 5 6 7 8 (TOP VIEW) 9 10 11 12 XCM524 VDOUT VSS Cd VIN2 PGND Lx DCOUT AGND EN2 VIN1 NC VROUT VDR VDOUT VSS Cd VIN1 VROUT DC/DC VIN PGND Lx VOUT AGND CE -
(BOTTOM VIEW) *DC/DC Ground pin (No.5 and 8) should be short before using the IC. * A dissipation pad on the reverse side of the package should be electrically isolated. *1: Voltage level of the VDR's dissipation pad should be VSS level. *2: Voltage level of the DC/DC's dissipation pad should be VSS level. Care must be taken for an electrical potential of each dissipation pad so as to enhance mounting strength and heat release when the pad needs to be connected to the circuit.
PIN ASSIGNMENT
PIN No 1 2 3 4 5 6 7 8 9 10 11 12 XCM524 VDOUT VSS Cd VIN2 PGND Lx DCOUT AGND EN2 VIN1 NC VROUT FUNCTIONS VDR Block: VD Output Voltage VDR Block: Ground VDR Block: Delay Capacitor connection DC/DC Block: Power Input DC/DC Block: Power Ground DC/DC Block: Switching Connection DC/DC Block: Output Voltage DC/DC Block: Analog Ground DC/DC Block: ON/OFF Control VDR Block: Power Input No Connection VDR Block: LDO Output
2/52
XCM524 Series
PRODUCT CLASSIFICATION
Ordering Information XCM524A- (*1) DC/DC Block: PWM fixed control XCM524B- (*1) DC/DC Block: PWM/PFM automatic switching control DESIGNATOR -
(*1) (*2)
DESCRIPTION Oscillation Frequency and Options Output Voltage Packages Taping Type (*2)
SYMBOL DR-G See the chart below See the chart below USP-12B01
DESCRIPTION
The XCM524 series is Halogen and Antimony free as well as being fully RoHS compliant. The device orientation is fixed in its embossed tape pocket.
DESIGNATOR DC/DC BLOCK A B C D OSCILLATION FREQUENCY 1.2M 3.0M 1.2M 3.0M CL DISCHARGE Not Available Not Available Available Available SOFT START Standard Standard High Speed High Speed VD DELAY FUNCTION Available Available Available Available VDR BLOCK VD SENSE PIN VIN VIN VIN VIN VD OUTPUT LOGIC Active Low Detect Active Low Detect Active Low Detect Active Low Detect
DESIGNATOR VDCOUT 01 02 03 04 05 06 1.0 1.2 1.5 1.8 3.3 1.8
VROUT 3.3 3.3 3.3 3.3 1.8 2.5
VDF 3.7 3.7 3.7 4.2 2.8 2.8
For other combinations of output voltages please consult with your Torex sales contact.
*This series are semi-custom products.
3/52
XCM524 Series
BLOCK DIAGRAMS
Step-Down DC/DC
VOUT
R2 Phase Compensation Current Feedback Current Limit
Available with CL Discharge, High Speed Soft-Start
Phase Compensation
Step-Down DC/DC
Current Feedback Current Limit
VOUT
R2
Error Amp.
PWM Comparator Logic Synch Buffer Drive
Error Amp.
PWM Comparator Logic Synch Buffer Drive
R1
Lx VIN
R1
VSHORT
Lx
VIN
VSHORT
Vref with Soft Start, CE
PWM/PFM Selector
Vref with Soft Start, CE
PWM/PFM Selector CE/ UVLO Cmp Ramp Wave Generator OSC
UVLO Cmp
VSS
UVLO R3
Ramp Wave Generator OSC
VSS CE
UVLO R3
R4
CE/MODE Control Logic
R4
CE/MODE Control Logic
CE
* A fixed PWM control scheme because that the "CE Control Logic" outputs a low level signal to the "PWM/PFM Selector". * An auto PWM/PFM switching control scheme because the "CE Control Logic" outputs a high level signal to the "PWM/PFM Selector". *Diodes inside the circuit are an ESD protection diode and a parasitic diode.
ABSOLUTE MAXIMUM RATINGS
PARAMETER VIN1Voltage VROUT Current VROUT Voltage VDOUT Current VDOUT Voltage Cd Voltage VIN2 Current Lx Voltage DCOUT Voltage EN2 Voltage Lx Current USP-12B01 Power USP-12B01 Dissipation (*2) (PCB mounted ) Junction Temperature Operating Temperature Range Storage Temperature Range
*1 IROUT= Less than Pd / for each channel. VIN1-VROUT Please refer to page 50 for details.
Ta=25
SYMBOL VIN1 IROUT VROUT IDOUT VDOUT VCd VIN2 VLx VDCOUT VEN2 ILx Pd Tj Topr Tstg
RATINGS 7.0 700(*1) VSS - 0.3 VIN1 + 0.3 50 VSS -0.3 7.0 VSS - 0.3 VIN1 + 0.3 -0.3 6.5 -0.3 VIN2 + 0.3 6.5 -0.3 6.5 -0.3 6.5 1500 150 800 (Only 1ch operation) 600 (Both 2ch operation) 125 - 40 - 55 + 85 + 125
UNITS V mA V mA V V V V V V mA mW
*2 The power dissipation figure shown is PCB mounted.
Please also note that the power dissipation is
4/52
XCM524 Series
ELECTRICAL CHARACTERISTICS
XCM524xx 1ch (VDR Block)
PARAMETER Output Voltage Maximum Output Current (0.9 ~ 2.4V) Maximum Output Current (2.5 ~ 4.9V) Load Regulation
(*2, 3)
Ta=25
SYMBOL VROUT(E) IROUTMAX
CONDITIONS IROUT=30mA VIN1=VROUT(T)+2.0V
MIN.
TYP.
MAX. UNITS CIRCUIT V mA mA mV mV mV A %/V V ppm / -
x0.98 VROUT(T) x1.02 400 15 E-1 E-2 90 0.01 100 50
VOLTAGE REGULATOR
VIN1=VROUT(T)+2.0V IROUTMAX Higher than VROUT(T)= 4.0V, VIN1=6.0V 500 VROUT 1mA IROUT 100mA Vdif1 (*4) IROUT=30mA Dropout Voltage Vdif2 IROUT=100mA Supply Current VIN1=VROUT(T)+1.0V IDD (FV / FX / FY / FZ series) VROUT(T) 0.9V, VIN1=2.0V VROUT(T)+1.0V VIN1 6.0V VROUT/ VROUT(T) 0.9V, 2.0V VIN1 6.0V Line Regulation (VIN1 VROUT) IROUT=30mA VROUT(T) 1.75V, IROUT=10mA Input Voltage VIN1 2.0 Output Voltage VROUT/ IROUT=30mA Temperature Characteristics ( Topr VROUT) -40 Topr 85 VIN1=[VROUT(T)+1.0]V+0.5Vp-pAC When VROUT(T) 1.25V, VIN1=2.25V+0.5Vp-pAC When VROUT(T) 4.75V, VIN1=5.75V+0.5Vp-pAC IROUT=50mA, f=10kHz VIN1=VROUT(T)+2.0V
145 0.20 6.0 -
Ripple Rejection Rate
PSRR
-
65
-
dB
Current Limiter (2.4V or less) Current Limiter (2.5V or more) Short-Circuit Current Detect Voltage VOLTAGE DETECTOR
(*7, 8) (*8)
IRLIMl IRLIM IRSHORT VDF(E) VHYS
-
600 600 50 VDF(T) VDF(T) x0.05 6.0 8.0 10.0 12.0 15.0 100 500
x1.02 VDF(T) x0.08 700
mA mA mA V V
Hysteresis Range
Supply Current (*9)
IDOUT
VIN1=VROUT(T)+2.0V Higher than VROUT(T)= 4.0V, VIN1=6.0V 500 VIN1=VROUT(T)+2.0V Higher than VROUT(T)= 4.0V, VIN1=6.0V x0.98 VDF(T) x0.02 VIN1 = 2.0V 3.0 VIN1 = 3.0V 4.0 VDOUT = 0.5V VIN1 = 4.0V 5.0 VIN1 = 5.0V 7.0 VIN1 = 6.0V 10.0 -40 Topr 85 300
mA
Detect Voltage Temperature Stability Delay Resistance
VDF/ (Topr VDF) Rdelay
ppm / k
VIN1=6.0V, Cd=0V Delay Resistance =6.0V/Delay Current
NOTE: *1 : Unless otherwise stated, (VIN1=VROUT(T)+1.0V) *2 : VROUT(T) *3 : VROUT(E) Specified VR output voltage Effective VR output voltage.
(*6)
Refer to the E-0 chart for values less than VDF(T)
1.5V.
(i.e. the VR output voltage when "VROUT(T)+1.0V" is provided at the VIN pin while maintaining a certain IROUT value). *4 : Vdif={VIN1 *6 : VIN1 *7 : VDF(T) *8 : VDF(E) -VROUT1
(*5)
}
*5 : A voltage equal to 98% of the VR output voltage whenever a stabilized VROUT1=IROUT{VROUT(T)+1.0V} is input. The input voltage when VOUT1, which appears as input voltage is gradually decreased. Specified detect voltage value Effective detect voltage value.
*9 : VD output current is sink current at detect. * The electrical characteristics above are when the other channel is in stop.
5/52
XCM524 Series
ELECTRICAL CHARACTERISTICS (Continued)
Dropout Voltage
SYMBOL PARAMETER NOMINAL DETECT VOLTAGE OUTPUT VOLTAGE VROUT(T) VDF(T) 0.90 1.00 1.10 1.20 1.30 1.40 1.50 1.60 1.70 1.80 1.90 2.00 2.10 2.20 2.30 2.40 2.50 2.60 2.70 2.80 2.90 3.00 3.10 3.20 3.30 3.40 3.50 3.60 3.70 3.80 3.90 4.00 4.10 4.20 4.30 4.40 4.50 4.60 4.70 4.80 4.90 5.00 5.10 5.20 5.30 5.40 5.50 MIN. 0.870 0.970 1.070 1.170 1.270 1.370 1.470 1.568 1.666 1.764 1.862 1.960 2.058 2.156 2.254 2.352 2.450 2.548 2.646 2.744 2.842 2.940 3.038 3.136 3.234 3.332 3.430 3.528 3.626 3.724 3.822 3.920 4.018 4.116 4.214 4.312 4.410 4.508 4.606 4.704 4.802 4.900 4.998 5.096 5.194 5.292 5.390 E-0 OUTPUT VOLTAGE DETECT VOLTAGE (V) VROUT(E) / VDF(E) MAX. 0.930 1.030 1.130 1.230 1.330 1.430 1.530 1.632 1.734 1.836 1.938 2.040 2.142 2.244 2.346 2.448 2.550 2.652 2.754 2.856 2.958 3.060 3.162 3.264 3.366 3.468 3.570 3.672 3.774 3.876 3.978 4.080 4.182 4.284 4.386 4.488 4.590 4.692 4.794 4.896 4.998 5.100 5.202 5.304 5.406 5.508 5.610 Vdif1 TYP. 1050 1000 900 800 700 600 500 400 300 200 120 80 80 80 80 80 70 70 70 70 70 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 50 50 E-1 DROPOUT VOLTAGE 1 (mV) (IOUT=30mA) Ta=25 Vdif1 MAX. 1100 1100 1000 900 800 700 600 500 400 300 150 120 120 120 120 120 100 100 100 100 100 90 90 90 90 90 90 90 90 90 90 80 80 80 80 80 80 80 80 80 80 70 70 Vdif2 TYP. 1150 1050 950 850 750 650 550 500 400 300 280 240 240 240 240 240 220 220 220 220 220 200 200 200 200 200 200 200 200 200 200 180 180 180 180 180 180 180 180 180 180 160 160 E-1 DROPOUT VOLTAGE 2 (mV) (IOUT=100mA) Ta=25 Vdif2 MAX. 1200 1200 1100 1000 900 800 700 600 500 400 380 350 330 330 310 310 290 290 290 270 270 270 250 250 250 250 250 250 250 250 250 230 230 230 230 230 230 230 230 230 230 210 210
6/52
XCM524 Series
ELECTRICAL CHARACTERISTICS (Continued)
XCM524xA 2ch (DC/DC Block)
PARAMETER Output Voltage Operating Voltage Range Maximum Output Current UVLO Voltage Supply Current Stand-by Current Oscillation Frequency PFM Switching Current PFM Duty Limit Maximum Duty Cycle Minimum Duty Cycle Efficiency
(*2)
VDCOUT=1.8V, fOSC=1.2MHz, Ta=25
CONDITIONS When connected to external components, VIN2=VEN2=5.0V,IOUT2=30mA When connected to external components, (*8) VIN2=VDCOUT(T)+2.0V,VEN2=1.0V VEN2=VIN2 VDCOUT=0V, (*1, *10) Voltage which Lx pin holding "L" level
VIN2=VEN2=5.0V,VDCOUT=VDCOUT(T)x1.1V (XCM524AA) (XCM524BA)
SYMBOL VDCOUT VIN2 IOUT2MAX VUVLO IDD ISTB fOSC IPFM DTYLIMIT_PFM DMAX DMIN EFFI RLXH1 RLXH2 RLXL1 RLXL2 ILEAKH ILEAKL ILIM
VDCOUT/ (VDCOUT T opr)
MIN. 1.764 2.7 600 1.00 1020 120
TYP. 1.800 1.40 22 15 0 1200 160 200
MAX. UNITS CIRCUIT 1.836 6.0 1.78 50 33 1.0 1380 200 V V mA V A A kHz mA % 0 0.55 0.67 0.66 0.77 1.0 1.0 1350 6.0 0.25 0.1 % % % A A mA ppm/ V V A
VIN2=5.0V,VEN2=0V,VDCOUT=VDCOUT(T)x1.1V When connected to external components, VIN2=VDCOUT(T)+2.0V,VEN2=1.0V, IOUT1=100mA When connected to external components, (*11) VIN2=VDCOUT(T)+2.0V,VEN2=VIN2, IOUT2=1mA VEN2=VIN2=(C-1) IOUT2=1mA
(*11)
VIN2=VEN2=5.0V,VDCOUT=VDCOUT(T)x0.9V VIN2=VEN2=5.0V,VDCOUT=VDCOUT(T)x1.1V When connected to external components, (*7) VEN2=VIN2 VDCOUT(T)+1.2V , IOUT2=100mA (*3) VIN2=VEN2=5.0V,VDCOUT=0V,ILX=100mA VIN2=VEN2=3.6V,VDCOUT=0V,ILX=100mA VIN2=VEN2=5.0V VIN2=VEN2=3.6V
(*4) (*4) (*3)
100 900 0.65 VSS - 0.1
92 0.35 0.42 0.45 0.52 0.01 0.01 1050 100 -
Lx SW "H" ON Resistance 1 Lx SW "H" ON Resistance 2 Lx SW "L" ON Resistance 1 Lx SW "L" ON Resistance 2 Lx SW "H" Leak Current Lx SW "L" Leak Current Current Limit Output Voltage Temperature Characteristics
(*9) (*5) (*5)
VIN2=VDCOUT=5.0V,VEN2=0V,LX=0V VIN2=VDCOUT=5.0V,VEN2=0V,LX=5.0V VIN2=VEN2=5.0V,VDCOUT=VDCOUT(T)x0.9V IOUT2=30mA -40 Topr 85
EN "H" Voltage EN "L" Voltage EN "H" Current EN "L" Current
VENH VENL IENH IENL
VDCOUT=0V, Applied voltage to VEN2, (*10) Voltage changes Lx to "H" level VDCOUT=0V, Applied voltage to VEN2 (*10) Voltage changes Lx to "L" level VIN2=VEN2=5.0V,VDCOUT=0V
VIN2=5.0V,VEN2=0V,VDCOUT=0V - 0.1 0.1 A When connected to external components, 0.5 1.0 2.5 ms Soft Start Time tSS VEN2=0VVIN2,IOUT1=1mA VIN2=VEN2=5.0V, VDCOUT=0.8xVDCOUT(T) Latch Time tLAT 1.0 20.0 ms (*6) Short Lx at 1 resistance Sweeping VDCOUT, VIN2=VEN2=5.0V, Short Lx at Short Protection VSHORT 1 resistance, DCOUT voltage which Lx becomes 0.675 0.900 1.125 V Threshold Voltage " Lx=L " within 1ms Test conditions: Unless otherwise stated, VIN2=5.0V VDCOUT(T)= Setting voltage NOTE: *1: Including hysteresis width of operating voltage. *2: EFFI = { ( output voltage output current ) ( input voltage input current) } 100 *3: ON resistance ( )= (VIN2 - Lx pin measurement voltage) 100mA *4: Design value *5: When temperature is high, a current of approximately 10 A (maximum) may leak. *6: Time until it short-circuits DCOUT with GND via 1 of resistor from an operational state and is set to Lx=0V from current limit pulse generating. *7: VDCOUT(T)+1.2V<2.7V, VIN2=2.7V. *8: When the difference between the input and the output is small, some cycles may be skipped completely before current maximizes. If current is further pulled from this state, output voltage will decrease because of P-ch driver ON resistance. *9: Current limit denotes the level of detection at peak of coil current. - 0.1V *10: "H" VIN2 VIN2 - 1.2V, "L" + 0.1V *11: XCM524A series exclude IPFM and DTYLIMIT_PFM because those are only for the PFM control's functions. * The electrical characteristics above are when the other channel is in stop.
7/52
XCM524 Series
ELECTRICAL CHARACTERISTICS (Continued)
XCM524xB 2ch (DC/DC BLOCK)
PARAMETER Output Voltage Operating Voltage Range Maximum Output Current UVLO Voltage Supply Current Stand-by Current Oscillation Frequency PFM Switching Current PFM Duty Limit Maximum Duty Cycle Minimum Duty Cycle Efficiency
(*2)
VDCOUT=1.8V, fOSC=3.0MHz, Ta=25
CONDITIONS When connected to external components, VIN2=VEN2=5.0V,IOUT2=30mA When connected to external components, (*8) VIN2= VDCOUT(T)+2.0V,VEN1=1.0V VEN2=VIN2 VDCOUT=0V, (*1, *10) Voltage which Lx pin holding "L" level
VIN2=VEN2=5.0V,VDCOUT=VDCOUT(T)x1.1V (XCM524AB) (XCM524BB)
SYMBOL VDCOUT VIN2 IOUT2MAX VUVLO IDD ISTB fOSC IPFM DTYLIMIT_PFM DMAX DMIN EFFI RLXH1 RLXH2 RLXL1 RLXL2 ILEAKH ILEAKL ILIM
VDCOUT/ (VDCOUT topr)
MIN. 1.764 2.7 600 1.00 2550 170
TYP. 1.800 1.40 46 21 0 3000 220 200
MAX. 1.836 6.0 1.78 65 35 1.0 3450 270 300 0 0.55 0.67 0.66 0.77 1.0 1.0 1350 6.0 0.25 0.1
UNITS CIRCUIT V V mA V A A kHz mA % % % % A A mA ppm/ V V A
VIN2=5.0V,VEN2=0V,VDCOUT=VDCOUT(T)x1.1V When connected to external components, VIN2=VDCOUT(T)+2.0V,VEN2=1.0V, IOUT2=100mA When connected to external components, (*11) VIN2=VDCOUT(T)+2.0V,VEN2=VIN2, IOUT2=1mA VEN2=VIN2=(C-1) IOUT2=1mA
(*11)
VIN2=VEN2=5.0V,VDCOUT=VDCOUT(T)x0.9V VIN2=VEN2=5.0V,VDCOUT=VDCOUT(T)x1.1V When connected to external components, (*7) VEN2=VIN2 VDCOUT(T)+1.2V , IOUT2=100mA (*3) VIN2=VEN2=5.0V,VDCOUT=0V,ILX=100mA VIN2=VEN2=3.6V,VDCOUT=0V,ILX=100mA VIN2=VEN1=5.0V VIN2=VEN1=3.6V
(*4) (*4) (*3)
100 900 0.65 VSS - 0.1
86 0.35 0.42 0.45 0.52 0.01 0.01 1050 100 -
Lx SW "H" ON Resistance 1 Lx SW "H" ON Resistance 2 Lx SW "L" ON Resistance 1 Lx SW "L" ON Resistance 2 Lx SW "H" Leak Current Lx SW "L" Leak Current
(*9) (*5) (*5)
VIN2=VDCOUT=5.0V,VEN2=0V,LX=0V VIN2=VDCOUT=5.0V,VEN2=0V,LX=5.0V VIN2=VEN2=5.0V,VDCOUT=VDCOUT(T)x0.9V IOUT2=30mA -40 Topr 85 VDCOUT=0V, Applied voltage to VEN2, (*10) Voltage changes Lx to "H" level VDCOUT=0V, Applied voltage to VEN2, (*10) Voltage changes Lx to "L" level VIN2=VEN2=5.0V, VDCOUT=0V
Current Limit Output Voltage Temperature Characteristics EN "H" Voltage EN "L" Voltage EN "H" Current EN "L" Current
VENH VENL IENH IENL
VIN2=5.0V, VEN2=0V, VDCOUT=0V - 0.1 0.1 A When connected to external components, 0.5 0.9 2.5 ms Soft Start Time tSS VEN2=0VVIN2,IOUT2=1mA VIN2=VEN2=5.0V,VDCOUT=0.8xVDCOUT(T) Latch Time tLAT 1.0 20.0 ms (*6) Short Lx at 1 resistance Sweeping VDCOUT, VIN2=VEN2=5.0V, Short Lx at Short Protection VSHORT 1 resistance, DCOUT voltage which Lx becomes 0.675 0.900 1.125 V Threshold Voltage " Lx=L " within 1ms Test conditions: Unless otherwise stated, VIN2=5.0V VDCOUT(T)= Setting voltage NOTE: *1: Including hysteresis width of operating voltage. *2: EFFI = { ( output voltage output current ) ( input voltage input current) } 100 *3: ON resistance ( )= (VIN2 - Lx pin measurement voltage) 100mA *4: Design value *5: When temperature is high, a current of approximately 10 A (maximum) may leak. *6: Time until it short-circuits DCOUT with GND via 1 of resistor from an operational state and is set to Lx=0V from current limit pulse generating. *7: VDCOUT(T)+1.2V<2.7V, VIN2=2.7V. *8: When the difference between the input and the output is small, some cycles may be skipped completely before current maximizes. If current is further pulled from this state, output voltage will decrease because of P-ch driver ON resistance. *9: Current limit denotes the level of detection at peak of coil current. *10: "H" VIN2 VIN2 - 1.2V, "L" + 0.1V - 0.1V *11: XCM524A series exclude IPFM and DTYLIMIT_PFM because those are only for the PFM control's functions. * The electrical characteristics above are when the other channel is in stop.
8/52
XCM524 Series
ELECTRICAL CHARACTERISTICS (Continued)
XCM524xC 2ch (DC/DC BLOCK)
PARAMETER Output Voltage Operating Voltage Range Maximum Output Current UVLO Voltage Supply Current Stand-by Current Oscillation Frequency PFM Switching Current PFM Duty Limit Maximum Duty Cycle Minimum Duty Cycle Efficiency Lx SW "H" ON Resistance 1 Lx SW "H" ON Resistance 2 Lx SW "L" ON Resistance 1 Lx SW "L" ON Resistance 2 Lx SW "H" Leak Current
(*9) (*5)
VDCOUT=1.8V, fOSC=1.2MHz, Ta=25
CONDITIONS When connected to external components, VIN2=VEN2=5.0V,IOUT1=30mA When connected to external components, (*8) VIN2=VDCOUT(T)+2.0V,VEN2=1.0V VEN2=VIN2 VDCOUT=0V, (*1, *10) Voltage which Lx pin holding "L" level VIN2=VEN2=5.0V,VDCOUT=VDCOUT(T)x1.1V (XCM524AC) (XCM524BC) MIN. 1.764 2.7 600 1.00 1020 120 100 900 0.65 VSS - 0.1 - 0.1 1.0 0.675 200 TYP. 1.800 1.40 22 15 0 1200 160 200 92 0.35 0.42 0.45 0.52 0.01 1050 100 0.25 0.900 300 0 0.55 0.67 0.66 0.77 1.0 1350 6.0 0.25 0.1 0.1 0.40 20 1.150 450 MAX. 1.836 6.0 1.78 50 33 1.0 1380 200 UNITS CIRCUIT V V mA V A A kHz mA % % % % A mA ppm/ V V A A ms ms V
SYMBOL VDCOUT VIN2 IOUT2MAX VUVLO IDD ISTB fOSC IPFM DTYLIMIT_PFM DMAX DMIN EFFI RLXH1 RLXH2 RLXL1 RLXL2 ILEAKH ILIM
VDCOUT/ (VDCOUT topr)
VIN2=5.0V,VEN2=0V,VDCOUT=VDCOUT(T)x1.1V When connected to external components, VIN2=VDCOUT(T)+2.0V,VEN2=1.0V, IOUT2=100mA When connected to external components, (*11) VIN2=VDCOUT(T)+2.0V,VEN2=VIN2, IOUT2=1mA VEN2=VIN2=(C-1)IOUT2=1mA
(*11)
VIN2=VEN2=5.0V, VDCOUT=VDCOUT(T)x0.9V VIN2=VEN2=5.0V, VDCOUT=VDCOUT(T)x1.1V When connected to external components, (*7) VEN2=VIN2 VDCOUT(T)+1.2V , IOUT2=100mA (*3) VIN2=VEN2=5.0V,VDCOUT=0V,ILX=100mA VIN2=VEN2=3.6V,VDCOUT=0V,ILX=100mA VIN2=VEN2=5.0V VIN2=VEN2=3.6V
(*4) (*4) (*3)
VIN1=VDCOUT=5.0V,VEN1=0V,LX=0V VIN2=VEN2=5.0V,VDCOUT=VDCOUT(T)x0.9V IOUT2=30mA -40 Topr 85 VDCOUT=0V, Applied voltage to VEN2, (*10) Voltage changes Lx to "H" level VDCOUT=0V, Applied voltage to VEN2, (*10) Voltage changes Lx to "L" level VIN2=VEN2=5.0V,VDCOUT=0V VIN2=5.0V,VEN2=0V,VDCOUT=0V When connected to external components, VEN2=0VVIN2, IOUT2=1mA VIN2=VEN2=5.0V,VDCOUT=0.8xVDCOUT(T) (*6) Short Lx at 1 resistance Sweeping VDCOUT, VIN2=VEN2=5.0V, Short Lx at 1 resistance, DCOUT voltage which Lx becomes " Lx=L " within 1ms VIN2=5.0V,LX=5.0V,VEN2=0V,VDCOUT=open
Current Limit Output Voltage Temperature Characteristics EN "H" Voltage EN "L" Voltage EN "H" Current EN "L" Current Soft Start Time Latch Time Short Protection Threshold Voltage CL Discharge
VENH VENL IENH IENL tSS tLAT VSHORT RDCHG
Test conditions: Unless otherwise stated, VIN2=5.0V VDCOUT(T)= Setting voltage NOTE: *1: Including hysteresis width of operating voltage. *2: EFFI = { ( output voltage output current ) ( input voltage input current) } 100 *3: ON resistance ( )= (VIN2 - Lx pin measurement voltage) 100mA *4: Design value *5: When temperature is high, a current of approximately 10 A (maximum) may leak. *6: Time until it short-circuits DCOUT with GND via 1 of resistor from an operational state and is set to Lx=0V from current limit pulse generating. *7: VDCOUT(T)+1.2V<2.7V, VIN2=2.7V. *8: When the difference between the input and the output is small, some cycles may be skipped completely before current maximizes. If current is further pulled from this state, output voltage will decrease because of P-ch driver ON resistance. *9: Current limit denotes the level of detection at peak of coil current. - 0.1V *10: "H" VIN2 VIN2 - 1.2V, "L" + 0.1V *11: XCM524A series exclude IPFM and DTYLIMIT_PFM because those are only for the PFM control's functions. * The electrical characteristics above are when the other channel is in stop.
9/52
XCM524 Series
ELECTRICAL CHARACTERISTICS (Continued)
XCM524xD 2ch (DC/DC BLOCK)
PARAMETER Output Voltage Operating Voltage Range Maximum Output Current UVLO Voltage Supply Current Stand-by Current Oscillation Frequency PFM Switching Current PFM Duty Limit Maximum Duty Cycle Minimum Duty Cycle Efficiency Lx SW "H" ON Resistance 1 Lx SW "H" ON Resistance 2 Lx SW "L" ON Resistance 1 Lx SW "L" ON Resistance 2 Lx SW "H" Leak Current
(*9) (*5)
VDCOUT=1.8V, fOSC=3.0MHz, Ta=25
CONDITIONS When connected to external components, VIN2=VEN2=5.0V,IOUT2=30mA When connected to external components, (*8) VIN2=VDCOUT(T)+2.0V,VEN2=1.0V VEN2=VIN2 VDCOUT=0V, (*1, *10) Voltage which Lx pin holding "L" level VIN2=VEN2=5.0V,VDCOUT=VDCOUT(T)x1.1V (XCM524AD) (XCM524BD) MIN. 1.764 2.7 600 1.00 2550 170 100 900 0.65 VSS - 0.1 - 0.1 1.0 0.675 200 TYP. 1.800 1.40 46 21 0 3000 220 200 86 0.35 0.42 0.45 0.52 0.01 1050 100 0.32 0.900 300 MAX. 1.836 6.0 1.78 65 35 1.0 3450 270 300 0 0.55 0.67 0.66 0.77 1.0 1350 6.0 0.25 0.1 0.1 0.50 20 1.150 450 UNITS CIRCUIT V V mA V A A kHz mA % % % % A mA ppm/ V V A A ms ms V
SYMBOL VDCOUT VIN2 IOUT2MAX VUVLO IDD ISTB fOSC IPFM DTYLIMIT_PFM DMAX DMIN EFFI RLXH1 RLXH2 RLXL1 RLXL2 ILeakH ILIM
VDCOUT/ (VDCOUT topr)
VIN2=5.0V,VEN2=0V,VDCOUT=VDCOUT(T)x1.1V When connected to external components, VIN2=VDCOUT(T)+2.0V,VEN2=1.0V, IOUT2=100mA When connected to external components, (*11) VIN2=VDCOUT(T)+2.0V,VEN2=VIN2, IOUT2=1mA VEN2=VIN2=(C-1)IOUT2=1mA
(*11)
VIN2=VEN2=5.0V, VDCOUT=VDCOUT(T)x0.9V VIN2=VEN2=5.0V, VDCOUT=VDCOUT(T)x1.1V When connected to external components, (*7) VEN2=VIN2 VDCOUT(T)+1.2V , IOUT2=100mA (*3) VIN2=VEN2=5.0V,VDCOUT=0V,ILX=100mA VIN2=VEN2=3.6V,VDCOUT=0V,ILX=100mA VIN2=VEN2=5.0V VIN2=VEN2=3.6V
(*4) (*4) (*3)
VIN2=VDCOUT=5.0V,VEN2=0V,LX=0V VIN2=VEN2=5.0V,VDCOUT=VDCOUT(T)x0.9V IOUT2=30mA -40 Topr 85 VDCOUT=0V, Applied voltage to VEN2, (*10) Voltage changes Lx to "H" level VDCOUT=0V, Applied voltage to VEN2, (*10) Voltage changes Lx to "L" level VIN2=VEN2=5.0V,VDCOUT=0V VIN2=5.0V,VEN2=0V,VDCOUT=0V When connected to external components, VEN2=0VVIN2, IOUT2=1mA VIN2=VEN2=5.0V,VDCOUT=0.8xVDCOUT(T) (*6) Short Lx at 1 resistance Sweeping VDCOUT, VIN2=VEN2=5.0V, Short Lx at 1 resistance, DCOUT voltage which Lx becomes " Lx=L " within 1ms VIN2=5.0V,LX=5.0V,VEN2=0V,VDCOUT=open
Current Limit Output Voltage Temperature Characteristics EN "H" Voltage EN "L" Voltage EN "H" Current EN "L" Current Soft Start Time Latch Time Short Protection Threshold Voltage CL Discharge
VENH VENL IENH IENL tSS tLAT VSHORT RDCHG
Test conditions: Unless otherwise stated, VIN2=5.0V VDCOUT(T)= Setting voltage NOTE: *1: Including hysteresis width of operating voltage. *2: EFFI = { ( output voltage output current ) ( input voltage input current) } 100 *3: ON resistance ( )= (VIN2 - Lx pin measurement voltage) 100mA *4: Design value *5: When temperature is high, a current of approximately 10 A (maximum) may leak. *6: Time until it short-circuits DCOUT with GND via 1 of resistor from an operational state and is set to Lx=0V from current limit pulse generating. *7: VDCOUT(T)+1.2V<2.7V, VIN2=2.7V. *8: When the difference between the input and the output is small, some cycles may be skipped completely before current maximizes. If current is further pulled from this state, output voltage will decrease because of P-ch driver ON resistance. *9: Current limit denotes the level of detection at peak of coil current. *10: "H" VIN2 VIN2 - 1.2V, "L" + 0.1V - 0.1V *11: XCM524A series exclude IPFM and DTYLIMIT_PFM because those are only for the PFM control's functions. * The electrical characteristics above are when the other channel is in stop.
10/52
XCM524 Series
ELECTRICAL CHARACTERISTICS (Continued)
PFM Switching Current (IPFM) by Oscillation Frequency and Output Voltage
1.2MHz SETTING VOLTAGE VDCOUT(T)1.2 1.2VVDCOUT(T)1.75 1.8VVDCOUT(T) 3.0MHz SETTING VOLTAGE VDCOUT(T)1.2 1.2VVDCOUT(T)1.75 1.8VVDCOUT(T) MIN. 190 180 170 TYP. 260 240 220 MIN. 140 130 120 TYP. 180 170 160 (mA) MAX. 240 220 200 (mA) MAX. 350 300 270
Measuring Maximum IPFM Limit, VIN2 Voltage
fOSC (C-1) 1.2MHz VDCOUT(T)+0.5V 3.0MHz VDCOUT(T)+1.0V
Minimum operating voltage is 2.7V Although when VDCOUT(T)=1.2V, fOSC=1.2MHz, (C-1)=1.7V the (C-1) becomes 2.7V because of the minimum operating voltage 2.7V.
Soft-Start Time Chart (XCM524xC/ XCM524xD Series Only)
PRODUCT SERIES fOSC 1.2MHz XCM524AC 1.2MHz 1.2MHz 1.2MHz XCM524BC 1.2MHz 1.2MHz XCM524xD 3.0MHz 3.0MHz OUTPUT VOLTAGE 0.8V 1.5V 1.8V 2.5V 0.8V 2.5V 0.8V 1.8V VDCOUT(T)<1.5V VDCOUT(T)<1.8V VDCOUT(T)<2.5V VDCOUT(T) 4.0V MIN. TYP. 250 320 250 320 250 320 250 320 s s s s s s s s MAX. 400 500 400 500 400 500 400 500 s s s s s s s s
VDCOUT(T)<2.5V VDCOUT(T) 4.0V
VDCOUT(T)<1.8V VDCOUT(T) 4.0V
TYPICAL APPLICATION CIRCUIT
Rpull-up
DC/DC BLOCK
VROUT
1
fOSC=3.0MHz
(Ceramic) (Ceramic) (Ceramic) (Ceramic)
VDOUT VDOUT VSS Cd VIN2 PGND Lx VROUT 12 NC
11
CL1
CIN1 CL1 L CIN2 CL2
: : : : :
1F 1F 4.7 F 10 F
2
Cd
1.5 H (NR3015 TAIIYO YUDEN)
3
VIN1 10 EN2 AGND
9
CIN1
VIN
CIN2
4
EN2
5
8
DC/DC BLOCK
CIN1 : : : : : 1F 1F CL1 L
VDCOUT
fOSC =1.2MHz
(Ceramic) (Ceramic) (Ceramic) (Ceramic)
6
DCOUT
7
4.7 H (NR4018 TAIIYO YUDEN) 4.7 F 10 F
L
CIN2 CL2
CL2
11/52
XCM524 Series
OPERATIONAL EXPLANATION
Voltage Regulator BLOCK
The voltage divided by resistors R1 & R2 is compared with the internal reference voltage by the error amplifier. The P-channel MOSFET which is connected to the VROUT pin is then driven by the subsequent output signal. The output voltage at the VROUT pin is controlled & stabilized by a system of negative feedback.
Detector Function with the XC524 Series The series' detector function monitors the voltage divided by resistors R3 & R4, which are connected to the VROUT pin or the VIN1 pin or the VSEN pin, as well as monitoring the voltage of the internal reference voltage source via the comparator. The VDSEN pin has options. A 'High' or 'Low' signal level can be output from the VDOUT pin when the VD pin voltage level goes below the detect voltage. The VD output logic has options. As VDOUT is an open-drain N-channel output, a pull-up resistor of about 220k is needed to achieve a voltage output. Because of hysteresis at the detector function, output at the VDOUT pin will invert when the detect voltage level increases above the release voltage (105% of the detect voltage). By connecting the Cd pin to a capacitor, the XCM524 series can apply a delay time to VDOUT voltage when releasing voltage. The delay time can be calculated from the internal resistance, Rdelay (500k fixed) and the value of Cd as per the following equation.
Delay Time = Cd x Rdelay x 0.7
Delay Time Cd 0.01 F 0.022 F 0.047 F 0.1 F 0.22 F 0.47 F 1F Rdelay standard : 300 ~ 700k DELAY TIME (TYP.) 3.5 ms 7.7 ms 16.5 ms 35 ms 77 ms 165 ms 350 ms
(1)
TYP : 500k DELAY TIME (MIN.MAX.) 2.1 ~ 4.9 ms 4.62 ~ 10.8 ms 9.87 ~ 23.0 ms 21.0 ~ 49.0 ms 46.2 ~ 108.0 ms 98.7 ~ 230.0 ms 210.0 ~ 490.0 ms
* The release delay time values above are calculated by using the formula (1). *1: The release delay time is influenced by the delay capacitance Cd.
With the XCM524 series, a stable output voltage is achievable even if used with low ESR capacitors, as a phase compensation circuit is built-in. The output capacitor (CL1) should be connected as close to VROUT pin and VSS pin to obtain stable phase compensation. Also, please connect an input capacitor (CIN1) of 1.0 F between the VIN1 pin and the VSS pin.
Output Capacitor Chart VROUT CL1 0.9 ~1.2V 4.7F 1.3 ~ 1.7V 2.2F 1.8 ~ 5.1V 1.0F
The XCM524 series' fold-back circuit operates as an output current limiter and a short protection of the output pin. When the load current reaches the current limit level, the fixed current limiter circuit operates and output voltage drops. When the output pin is shorted to the VSS level, current flows about 50mA.
12/52
XCM524 Series
OPERATIONAL EXPLANATION (Continued)
DC/DC BLOCK
The DC/DC block of the XCM524 series consists of a reference voltage source, ramp wave circuit, error amplifier, PWM comparator, phase compensation circuit, output voltage adjustment resistors, P-channel MOSFET driver transistor, N-channel MOSFET switch transistor for the synchronous switch, current limiter circuit, UVLO circuit and others. (See the block diagram above.) The series ICs compare, using the error amplifier, the voltage of the internal voltage reference source with the feedback voltage from the DCOUT pin through split resistors, R1 and R2. Phase compensation is performed on the resulting error amplifier output, to input a signal to the PWM comparator to determine the turn-on time during PWM operation. The PWM comparator compares, in terms of voltage level, the signal from the error amplifier with the ramp wave from the ramp wave circuit, and delivers the resulting output to the buffer driver circuit to cause the Lx pin to output a switching duty cycle. This process is continuously performed to ensure stable output voltage. The current feedback circuit monitors the P-channel MOS driver transistor current for each switching operation, and modulates the error amplifier output signal to provide multiple feedback signals. This enables a stable feedback loop even when a low ESR capacitor such as a ceramic capacitor is used ensuring stable output voltage. The reference voltage source provides the reference voltage to ensure stable output voltage of the DC/DC converter. The ramp wave circuit determines switching frequency. The frequency is fixed internally and can be selected from 1.2MHz or 3.0MHz. Clock pulses generated in this circuit are used to produce ramp waveforms needed for PWM operation, and to synchronize all the internal circuits. The error amplifier is designed to monitor output voltage. The amplifier compares the reference voltage with the feedback voltage divided by the internal split resistors, R1 and R2. When a voltage is lower than the reference voltage is fed back, the output voltage of the error amplifier increases. The gain and frequency characteristics of the error amplifier output are fixed internally to deliver an optimized signal to the mixer. The current limiter circuit of the XCM524series monitors the current flowing through the P-channel MOS driver transistor connected to the Lx pin, and features a combination of the current limit mode and the operation suspension mode. When the driver current is greater than a specific level, the current limit function operates to turn off the pulses from the Lx pin at any given timing. When the driver transistor is turned off, the limiter circuit is then released from the current limit detection state. At the next pulse, the driver transistor is turned on. However, the transistor is immediately turned off in the case of an over current state. When the over current state is eliminated, the IC resumes its normal operation. The IC waits for the over current state to end by repeating the steps through . If an over current state continues for a few ms and the above three steps are repeatedly performed, the IC performs the function of latching the OFF state of the P-channel driver transistor, and goes into operation suspension mode. Once the IC is in suspension mode, operations can be resumed by either turning the IC off via the CE/MODE pin, or by restoring power to the VIN2 pin. The suspension mode does not mean a complete shutdown, but a state in which pulse output is suspended; therefore, the internal circuitry remains in operation. The current limit of the XCM524 series can be set at 1050mA at typical. Besides, care must be taken when laying out the PC Board, in order to prevent miss-operation of the current limit mode. Depending on the state of the PC Board, latch time may become longer and latch operation may not work. In order to avoid the effect of noise, the board should be laid out so that input capacitors are placed as close to the IC as possible.
Limit #ms Limitms
Current Limit LEVEL
ILx
0mA
VDCOUT
VSS
Lx
VEN2 Restart
VIN2
13/52
XCM524 Series
OPERATIONAL EXPLANATION (Continued)
The short-circuit protection circuit monitors the internal R1 and R2 divider voltage from the DCOUT pin. In case where output is accidentally shorted to the Ground and when the FB point voltage decreases less than half of the reference voltage (Vref) and a current more than the ILIM flows to the driver transistor, the short-circuit protection quickly operates to turn off and to latch the P-channel MOS driver transistor. In latch state, the operation can be resumed by either turning the IC off and on via the EN2 pin, or by restoring power supply to the VIN2 pin. When sharp load transient happens, a voltage drop at the DCOUT pin is propagated to FB point through CFB, as a result, short circuit protection may operate in the voltage higher than 1/2 VOUT voltage. When the VIN2 pin voltage becomes 1.4V or lower, the P-channel output driver transistor is forced OFF to prevent false pulse output caused by unstable operation of the internal circuitry. When the VIN2 pin voltage becomes 1.8V or higher, switching operation takes place. By releasing the UVLO function, the IC performs the soft start function to initiate output startup operation. The soft start function operates even when the VIN pin voltage falls momentarily below the UVLO operating voltage. The UVLO circuit does not cause a complete shutdown of the IC, but causes pulse output to be suspended; therefore, the internal circuitry remains in operation. In the PFM control operation, until coil current reaches to a specified level (IPFM) , the IC keeps the P-ch MOSFET on. In this case, on-time (tON) that the P-ch MOSFET is kept on can be given by the following formula. tON = LxIPFM/(VIN2-VDCOUT) IPFM In the PFM control operation, the PFM duty limit (DTYLIMIT_PFM) is set to 200% (TYP.). Therefore, under the condition that the duty increases (e.g. the condition that the step-down ratio is small), it's possible for P-ch MOSFET to be turned off even when coil current doesn't reach to IPFM. IPFM
PFM Duty Limit
IPFM
IPFM
14/52
XCM524 Series
OPERATIONAL EXPLANATION (Continued)
XCM524 series can quickly discharge the electric charge at the output capacitor (CL2) when a low signal to the CE pin which enables a whole IC circuit put into OFF state, is inputted via the N-channel MOS switch located between the LX pin and the VSS pin. When the IC is disabled, electric charge at the output capacitor (CL) is quickly discharged so that it may avoid application malfunction. Discharge time of the output capacitor (CL) is set by the CL auto-discharge resistance (R) and the output capacitor (CL). By setting time constant of a CL auto-discharge resistance value [R] and an output capacitor value (CL2) as ( =C x R), discharge time of the output voltage after discharge via the N channel transistor is calculated by the following formula. V = VDCOUT(T)xe -t / or t = Ln ( VDCOUT(T)/V)
V : Output voltage after discharge, VDCOUT(T) : Output voltage after discharge t: Discharge time : CxR C = Capacitance of Output capacitor CL2 R = CL auto-discharge resistance
100
Output Voltage Relative Value 100 = Setting Voltage Value
90 80 70 60 50 40 30 20 10 0 0 10 20 30 40 50 60 70
CL=10uF CL=20uF CL=50uF
80
90
100
NOTE ON USE
When the DC/DC converter and the VR are connected as VDCOUT=VIN1, the following points should be noted. 1. When larger value is used in DC/DC output capacitor CL2, the larger value is also used in CL1 as in proportional. Please be noted that when CL2 capacitance of the VR is getting large, an inrush current increases at VR start-up, DC/DC short circuit protection starts to operate, as a result, the IC may happen to stop.
* VR inrush current IIN1 makes DC/DC short-circuit protection to
DCOUT(1V/div)
short-circuit protection to start
start, as a result, the IC may happen to stop.
IIN2(500mA/div) VROUT(1V/div) EN2(5V/div)
The left waver forms are taken at CL1=10 contrast to the recommended 1.0 F).
, CL2=10
F(in
50us/div
15/52
XCM524 Series
NOTE ON USE (Continued)
1. Please use this IC within the stated absolute maximum ratings. The IC is liable to malfunction should the ratings be exceeded. 2. Where wiring impedance is high, operations may become unstable due to noise and/or phase lag depending on output current. Especially, VIN1 and VSS wiring should be taken into consideration for reinforcement. 3. Please wire the input capacitor (CIN1) and the output capacitor (CL1) as close to the IC as possible. Care shall be taken for capacitor selection to ensure stability of phase compensation from the point of ESR influence.
1. The XCM524 series is designed for use with ceramic output capacitors. If, however, the potential difference is too large between the input voltage and the output voltage, a ceramic capacitor may fail to absorb the resulting high switching energy and oscillation could occur on the output. If the input-output potential difference is large, connect an electrolytic capacitor in parallel to compensate for insufficient capacitance. 2. Spike noise and ripple voltage arise in a switching regulator as with a DC/DC converter. These are greatly influenced by external component selection, such as the coil inductance, capacitance values, and board layout of external components. Once the design has been completed, verification with actual components should be done. 3. As a result of input-output voltage and load conditions, oscillation frequency goes to 1/2, 1/3, and continues, then a ripple may increase. 4. When input-output voltage differential is large and light load conditions, a small duty cycle comes out. After that, 0%duty cycle may continue in several periods. 5. When input-output voltage differential is small and heavy load conditions, a large duty cycle comes out and may continues100% duty cycle in several periods. 6. With the IC, the peak current of the coil is controlled by the current limit circuit. Since the peak current increases when dropout voltage or load current is high, current limit starts operation, and this can lead to instability. When peak current becomes high, please adjust the coil inductance value and fully check the circuit operation. In addition, please calculate the peak current according to the following formula: Ipk =(VIN2-VDCOUT)xOnDuty/(2xLxfOSC) + IOUT2 L Coil Inductance Value fOSC Oscillation Frequency 7. When the peak current which exceeds limit current flows within the specified time, the built-in P-channel MOS driver transistor turns off. During the time until it detects limit current and before the P-channel built-in transistor can be turned off, the current for limit current flows; therefore, care must be taken when selecting the rating for the external components such as a coil. 8. Depending on the state of the PC Board, latch time may become longer and latch operation may not work. In order to avoid the effect of noise, the board should be laid out so that input capacitors are placed as close to the IC as possible. 9. Use of the IC at voltages below the recommended voltage range may lead to instability. 10. This IC should be used within the stated absolute maximum ratings in order to prevent damage to the device. 11. When the IC is used in high temperature, output voltage may increase up to input voltage level at no load because of the leak current of the P-channel MOS driver transistor.
16/52
XCM524 Series
NOTE ON USE (Continued)
12. The current limit is set to 1350mA (MAX.) at typical. However, the current of 1350mA or more may flow. In case that the current limit functions while the DCOUT pin is shorted to the GND pin, when P-channel MOSFET is ON, the potential difference for input voltage will occur at both ends of a coil. For this, the time rate of coil current becomes large. By contrast, when N- channel MOSFET switch is ON, there is almost no potential difference at both ends of the coil since the DCOUT pin is shorted to the GND pin. Consequently, the time rate of coil current becomes quite small. According to the repetition of this operation, and the delay time of the circuit, coil current will be converged on a certain current value, exceeding the amount of current, which is supposed to be limited originally. Even in this case, however, after the over current state continues for several ms, the circuit will be latched. A coil should be used within the stated absolute maximum rating in order to prevent damage to the device. Current flows into P-channel MOS driver transistor to reach the current limit (ILIM). The current of ILIM or more flows since the delay time of the circuit occurs during from the detection of the current limit to OFF of P-channel MOS driver transistor. Because of no potential difference at both ends of the coil, the time rate of coil current becomes quite small. Lx oscillates very narrow pulses by the current limit for several ms. The circuit is latched, stopping its operation.
# ms
13. In order to stabilize VIN1's voltage level and oscillation frequency, we recommend that a by-pass capacitor (CIN2) be connected as close as possible to the VIN2 & VSS pins. 14. High step-down ratio and very light load may lead an intermittent oscillation. 15. During PWM / PFM automatic switching mode, operating may become unstable at transition to continuous mode. Please verify with actual parts.

17/52
XCM524 Series
NOTE ON USE (Continued)
16. Please note the L value of the coil. The IC may enter unstable operation if the combination of ambient temperature, setting voltage, oscillation frequency, and L value are not adequate.

The Range of L Value
fOSC 3.0MHz 1.2MHz 0.8V VDCOUT VDCOUT 4.0V 1.0 3.3 4.7 VDCOUT 2.5V 2.5V VDCOUT L Value H H H 2.2 6.8 6.8 H H H
*When a coil less value of 4.7H is used at when a coil less value of 1.5H is used at fOSC=3.0MHz, peak coil current more easily reach the current limit ILMI. In this case, it may happen that the IC can not provide 600mA output current.
17. Under input-output voltage differential is large, operating may become unstable at transition to continuous mode. Please verify with actual parts.

Instructions of pattern layouts
Please use this IC within the stated absolute maximum ratings. The IC is liable to malfunction should the ratings be exceeded. 2. In order to stabilize VIN1 VIN2 DCOUT VROUT voltage level, we recommend that a by-pass capacitor (CIN1 CIN2 CL1 CL2) be connected as close as possible to the VIN1 VIN2 DCOUT VROUT and GND VSS pins. 3. Please mount each external component as close to the IC as possible. 4. Wire external components as close to the IC as possible and use thick, short connecting traces to reduce the circuit impedance. 5. VSS AGND PGND VSS ground wiring is recommended to get large area. The IC may goes into unstable operation as a result of VSS voltage level fluctuation during the switching. 6. This series' internal driver transistors bring on heat because of the output current (IOUT) and ON resistance of driver transistors. Recommended Pattern Layout 1.
Front
Back
18/52
XCM524 Series
TEST CIRCUITS
Outpur Capacitor
VROUT CL 0.9 ~1.2V 4.7 F 1.3 ~ 1.7V 2.2 F 1.8V ~ 5.1V 1.0 F
19/52
XCM524 Series
TEST CIRCUITS (Continued)
20/52
XCM524 Series
TYPICAL PERFORMANCE CHARACTERISTICS
1ch:VDR Block
1 VR Output Voltage vs. VR Output Current
XC6405 Series =1.8V VROUT (VR:1.8V) VIN=3.8V, VIN1=3.8V 2.5 2.0 1.5 1.0 0.5 0.0 0 100 200 300 400 500 600 700 Output Current ROUT (mA) Output Current: IIROUT(mA) Topr= 25 Topr= - 40 Topr= 85 CIN=1.0 F (ceramic), CL=1.0 FF(ceramic) CIN1=1.0 F(ceramic), CL1=1.0 (ceramic) 2.5 2.0 1.5 1.0 0.5 0.0 0 100 200 300 400 500 600 700 Output Current ROUT (mA) Output Current: IIROUT(mA) VIN= 3.8V VIN= 2.1V VIN= 6.0V CIN=1.0 F (ceramic), CL=1.0 F F(ceramic) CIN1=1.0 F(ceramic), CL1=1.0 (ceramic) XC6405 Series =1.8V VROUT (VR:1.8V)
Output Voltage VROUT Output Voltage: VROUT (V) V
XC6405 Series (VR:2.5V) VROUT=2.5V
VIN1=4.5V VIN=4.5V,
Output Voltage: VROUT (V) Output Voltage VROUT V
XC6405 VROUT=2.5V Series (VR:2.5V) 3.0 2.5 CIN=1.0 F (ceramic), CL=1.0 FF(ceramic) CIN1=1.0 F(ceramic), CL1=1.0 (ceramic)
3.0 2.5 Output Voltage VROUT V Output Voltage: VROUT (V) 2.0 1.5 1.0 0.5 0.0 0
CIN=1.0 F (ceramic), CL=1.0 F F(ceramic) CIN1=1.0 F(ceramic), CL1=1.0 (ceramic)
Topr= 25 Topr= - 40 Topr= 85
Output Voltage: VROUT V Output Voltage VROUT (V)
2.0 1.5 1.0 0.5 0.0 VIN= 4.5V VIN= 2.8V VIN= 6.0V
100
200
300
400
500
600
700
0
100
200
300
400
500
600
700
Output Current: IIROUT(mA) Output Current ROUT (mA)
Output Current: IIROUT(mA) Output Current ROUT (mA)
XC6405 VROUT=3.0V Series (VR:3.0V) VIN=5.0V, VIN1=5.0V 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0.0 0 100 200 300 400 500 600 700 Topr= 25 Topr= - 40 Topr= 85 CIN=1.0 F (ceramic), CL=1.0 F F(ceramic) CIN1=1.0 F(ceramic), CL1=1.0 (ceramic) 4.0 3.5
XC6405 VROUT=3.0V Series (VR:3.0V) CIN=1.0 F (ceramic), CL=1.0 FF(ceramic) CIN1=1.0 F(ceramic), CL1=1.0 (ceramic)
Output Voltage: VROUT (V) V Output Voltage VROUT
Output Voltage Output Voltage: VVROUT V ROUT (V)
3.0 2.5 2.0 1.5 1.0 0.5 0.0 0 100 200 300 400 500 600 700 VIN= 5.0V VIN= 6.0V
Output Current: IROUT (mA) Output Current IROUT(mA)
Output Current ROUT (mA) Output Current: IIROUT(mA)
21/52
XCM524 Series
TYPICAL PERFORMANCE CHARACTERISTICS (Continued)
1 VR Output Voltage vs. VR Output Current (Continued)
XC6405 VROUT=5.0V Series (VR:5.0V) 6.0 5.0 Output Voltage VROUT Output Voltage: VROUT (V)V 4.0 3.0 2.0 1.0 0.0 0 100 200 300 400 500 600 700 Output Current Output Current: IIROUT(mA) ROUT (mA) Topr= 25 Topr= - 40 Topr= 85 VIN=6.0V, VIN1=6.0V CIN=1.0 F (ceramic), CL=1.0 F F(ceramic) CIN1=1.0 F(ceramic), CL1=1.0 (ceramic) 6.0 5.0 4.0 VIN= 6.0V 3.0 2.0 1.0 0.0 0 100 200 300 400 500 600 700 Output Current IROUT (mA) Output Current: IROUT(mA) XC6405 VROUT=5.0V Series (VR:5.0V) CIN=1.0 F (ceramic), CL=1.0 F F(ceramic) CIN1=1.0 F(ceramic), CL1=1.0 (ceramic)
Output Voltage: VROUT V Output Voltage VROUT (V)
1.5
VIN=2.9V, VIN1=2.9V CIN=1.0 F (ceramic), CL=4.7 FF(ceramic) CIN1=1.0 F(ceramic), CL1=4.7 (ceramic) Topr= 25 Topr= - 40 Topr= 85
XC6405 Series (VR:0.9V) VROUT=0.9V
XC6405 ROUT=0.9V V Series (VR:0.9V) 1.5 1.2 0.9 CIN=1.0 F (ceramic), CL=4.7 F F(ceramic) CIN1=1.0 F(ceramic), CL1=4.7 (ceramic)
Output Voltage:VROUT V Output Voltage VROUT (V)
0.9
Output Voltage: VROUT (V) Output Voltage VROUT V
1.2
0.6
0.6 0.3 0.0 VIN= 2.0V VIN= 2.9V VIN= 6.0V 0 100 200 300 400
ROUT
0.3
0.0 0 100 200 300 400 500 600 700 Output Current IROUT(mA) Output Current: IROUT (mA)
500
600
700
Output Current IROUT(mA) Output Current: I (mA)
22/52
XCM524 Series
TYPICAL PERFORMANCE CHARACTERISTICS (Continued)
2 VR Output Voltage vs. Input Voltage V Series (VR:0.9V) XC6405 ROUT=0.9V
1.5 1.3 1.1 0.9 0.7 0.5 0.5 1.0 1.5 2.0 Input Voltage V (V) Input Voltage: VIN (V)
IN1
Topr=25 Ta=25 CIN=1.0 F (ceramic), CL=4.7 FF(ceramic) CIN1=1.0 F(ceramic), CL1=4.7 (ceramic) IOUT=0mA 1mA 30mA 100mA
1.00
VROUT=0.9V XC6405 Series (VR:0.9V) Topr=25 Ta=25 CIN=1.0 IN1=1.0 F(ceramic), CL1=4.7 F(ceramic) C F (ceramic), CL=4.7 F (ceramic)
Output Voltage VROUT Output Voltage: VROUT (V) V
Output Voltage ROUT (V) Output Voltage: VVROUT V
0.80
IOUT=0mA 1mA 30mA 100mA
2.5
0.60 2.0
3.0
Input Voltage Input Voltage:VIN (V) VIN1 (V)
4.0
5.0
6.0
XC6405 Series (VR:1.8V) VROUT=1.8V 2.0 Topr=25 Ta=25 CIN=1.0 F (ceramic), CL=1.0 F F(ceramic) CIN1=1.0 F(ceramic), CL1=1.0 (ceramic) 1.90
Topr=25 Ta=25 CIN=1.0 =1.0 F(ceramic), CL1=1.0 (ceramic) CIN1 F (ceramic), CL=1.0 F F(ceramic)
VROUT (VR:1.8V) XC6405 Series=1.8V
Output Voltage VROUT Output Voltage: VROUT (V) V
Output Voltage: VROUT (V)V Output Voltage VROUT
1.8
1.85
1.6 IOUT=0mA 1mA 30mA 100mA
1.80
1.4
1.75
1.2
1.70
IOUT=0mA 1mA 30mA 100mA
1.0 1.3 1.8 Input Voltage VIN1 (V) Input Voltage: VIN (V) 2.3
1.65 3.0 3.5 4.0 4.5 5.0 5.5 6.0 Input Voltage VIN1 (V) Input Voltage:VIN (V)
XC6405 Series (VR:2.5V) VROUT=2.5V 2.7 Topr=25 Ta=25 CIN=1.0 F (ceramic), CL=1.0 F (ceramic) CIN1=1.0 F(ceramic), CL1=1.0 F(ceramic) 2.60
Topr=25 Ta=25 CIN=1.0 =1.0 F(ceramic), CL1=1.0 (ceramic) CIN1 F (ceramic), CL=1.0 F F(ceramic)
VROUT=2.5V XC6405 Series (VR:2.5V)
Output Voltage: VROUT (V) Output Voltage VROUT V
Output Voltage: VROUT (V)V Output Voltage VROUT
2.5
2.55
2.3 IOUT=0mA 1mA 30mA 100mA
2.50 IOUT=0mA 1mA 30mA 100mA
2.1
2.45
1.9
1.7 2.0 2.5 Input Voltage VIN1 (V) Input Voltage:VIN (V) 3.0
2.40 3.0 3.5 4.0 4.5 5.0 5.5 6.0 Input Voltage VIN1 (V) Input Voltage:VIN (V)
23/52
XCM524 Series
TYPICAL PERFORMANCE CHARACTERISTICS (Continued)
2 VR Output Voltage vs. Input Voltage (Continued) VROUT=3.0V XC6405 Series (VR:3.0V) Topr=25 Ta=25 CIN=1.0 F (ceramic), CL=1.0 F (ceramic) CIN1=1.0 F(ceramic), CL1=1.0 F(ceramic)
XC6405ROUT=3.0V V Series (VR:3.0V)
3.2 Output Voltage ROUT (V) Output Voltage: VVROUT (V) 3.0 2.8 2.6 2.4 2.2 2.5
3.10
Topr=25 Ta=25 CIN=1.0 F (ceramic), CL=1.0 F F(ceramic) CIN1=1.0 F(ceramic), CL1=1.0 (ceramic)
Output Voltage VROUT Output Voltage: VROUT (V) V
3.05
IOUT=0mA 1mA 30mA 100mA
3.00 2.95 IOUT=0mA 1mA 30mA 100mA
2.90
3.0 Input Voltage V (V) Input Voltage:VIN (V) IN1
3.5
2.85 4.0
4.5
Input Voltage V (V) Input Voltage: VIN (V) IN1
5.0
5.5
6.0
5.2
Output Voltage: VROUT (V) (V) Output Voltage VROUT
Topr=25 Ta=25 CIN=1.0 F (ceramic), CL=1.0 FF(ceramic) CIN1=1.0 F(ceramic), CL1=1.0 (ceramic)
XC6405 VROUT=5.0V Series (VR:5.0V)
5.10
Topr=25 Ta=25 CIN=1.0 F (ceramic), CL=1.0 FF(ceramic) CIN1=1.0 F(ceramic), CL1=1.0 (ceramic)
V Series (VR:5.0V) XC6405 ROUT=5.0V
4.8 4.6 4.4 4.2 4.5
Output Voltage VROUT Output Voltage: VROUT (V) V
5.0
5.05
IOUT=0mA 1mA 30mA 100mA
5.00
4.95
4.90
IOUT=0mA 1mA 30mA 100mA
5.0 Input Voltage: VIN1 (V) Input Voltage VIN (V)
5.5
4.85 5.2
5.3
5.4
5.5
5.6
5.7
5.8
5.9
6.0
Input Voltage:VIN (V) Input Voltage VIN1 (V)
24/52
XCM524 Series
TYPICAL PERFORMANCE CHARACTERISTICS (Continued)
3 Dropout Voltage vs. VR Output Current
XC6405VROUT=0.9V Series (VR:0.9V) 1.6 Dropout Voltage Vdif (V) Dropout voltage:Vdif (V) 1.4 1.2 1 0.8 0.6 0 50 100 150 200 CIN=1.0 F (ceramic), CL=4.7 FF(ceramic) CIN1=1.0 F(ceramic), CL1=4.7 (ceramic) 1 Dropout Voltage Vdif (V) Dropout voltage:Vdif (V) 0.8 0.6 0.4 0.2 0 0 50 100 150 200 XC6405 V Series=1.8V (VR:1.8V)
ROUT
CIN=1.0 F (ceramic), CL=1.0 FF(ceramic) CIN1=1.0 F(ceramic), CL1=1.0 (ceramic)
Topr= 85 25 - 40
Topr= 85 25 --40 40
Output Current: I IROUT (mA) VR Output CurrentROUT (mA)
VR Output Current IROUT (mA) Output Current: IROUT (mA)
XC6405 ROUT=2.5V V Series (VR:2.5V) 1 CIN=1.0 F (ceramic), CL=1.0 F F(ceramic) CIN1=1.0 F(ceramic), CL1=1.0 (ceramic) 1
XC6405 Series (VR:3.0V) VROUT=3.0V CIN=1.0 F (ceramic), CL=1.0 F F(ceramic) CIN1=1.0 F(ceramic), CL1=1.0 (ceramic)
Dropout voltage: Vdif (V) Dropout Voltage Vdif V
Dropout Voltage Vdif (V) Dropout voltage:Vdif (V)
0.8
0.6
Topr= 85 25 - 40
0.8
0.6
Topr= 85 25 - 40
0.4
0.4
0.2
0.2
0 0 50 100 150 200
0 0 50 100 150 200
Output Current: IROUT (mA) VR Output Current IROUT (mA)
Output Current: IROUT (mA) VR Output Current IROUT (mA)
XC6405 Series (VR:5.0V) VROUT=5.0V 1 CIN=1.0 F (ceramic), CL=1.0 FF(ceramic) CIN1=1.0 F(ceramic), CL1=1.0 (ceramic)
Dropout voltage:Vdif (V) Dropout Voltage Vdif (V)
0.8
0.6
0.4
Topr= 85 25 - 40
0.2
0 0 50 100 150 200 VR Output Current IROUT (mA) Output Current: IROUT (mA)
25/52
XCM524 Series
TYPICAL PERFORMANCE CHARACTERISTICS (Continued)
4 Supply Current vs. Input Voltage V Series (VR:0.9) XC6405 ROUT=0.9V
120 100 Supply Current IDD A Supply Current: ISS (A) 80 60 40 20 0 0.0 Topr= 85 25 - 40 Supply Current IDD A Supply Current: ISS (A) CIN=1.0 F (ceramic), CL=4.7 FF(ceramic) CIN1=1.0 F(ceramic), CL1=4.7 (ceramic) 120 100 80 60 40 20 0 0.0 Topr= 85 25 - 40
VROUT (VR:1.8V) XC6403 Series=1.8V
CIN=1.0 F (ceramic), CL=1.0 F (ceramic) CIN1=1.0 F(ceramic), CL1=1.0 F(ceramic)
1.0
2.0
3.0
4.0
5.0
6.0
Input Voltage: VIN (V) Input Voltage VIN1 (V)
1.0
2.0 3.0 4.0 Input Voltage VIN (V) Input Voltage: V (V)
IN1
5.0
6.0
ROUT XC6405 Series (VR:2.5V)
V
=2.5V
VROUT=3.0V XC6405 Series (VR:3.0V)
120 100 CIN=1.0 F (ceramic), CL=1.0 FF(ceramic) CIN1=1.0 F(ceramic), CL1=1.0 (ceramic)
120 100
CIN1=1.0 F(ceramic), CL1=1.0 (ceramic) CIN=1.0 F (ceramic), CL=1.0 FF(ceramic)
Iss ( Supply Current ISS A) A Supply Current: IDD (A)
Supply Current: IDD (A) Supply Current ISS ( A)
80 60 40 20 0 0.0 Topr= 85 25 - 40
80 60 40 20 0 0.0 Topr= 85 25 - 40
1.0
2.0
3.0
4.0
5.0
6.0
1.0
2.0
3.0
4.0
5.0
6.0
Input Voltage:VIN (V) Input Voltage VIN1 (V)
Input Voltage: VIN (V) Input Voltage VIN1 (V)
XC6405VROUT=5.0V Series (VR:5.0V) 120 100 CIN=1.0 F (ceramic), CL=1.0 F F(ceramic) CIN1=1.0 F(ceramic), CL1=1.0 (ceramic)
Supply Current: ISS (A) Supply Current IDD ( A)
80 60 40 20 0 0.0 Topr= 85 25 - 40
1.0
2.0
3.0
4.0
5.0
6.0
Input Voltage VIN Input Voltage: VIN1 (V)
26/52
XCM524 Series
TYPICAL PERFORMANCE CHARACTERISTICS (Continued)
5 VR Output Voltage vs. Ambient Temperature VROUT (VR:0.9) XC6405 Series=0.9V VROUT (VR:1.8V) XC6403 Series =1.8V
1.10 1.00 0.90 0.80 0.70 0.60 -50
VIN=2.0V VIN1=2.0V CIN1=1.0 (ceramic), CL1=4.7 F(ceramic) CIN=1.0 F F(ceramic),CL=4.7 F (ceramic)
2.00 1.95
VVIN=2.8V IN1=2.8V CIN1=1.0 F(ceramic), CL1=1.0 F(ceramic) CIN=1.0 F(ceramic), CL=1.0 F (ceramic)
Output Voltage VROUT (V) Output Voltage: VROUT V
Output Voltage VROUT (V) Output Voltage: VROUT V
1.90 1.85 1.80 1.75 1.70 1.65 1.60 IOUT=0mA =30mA =100mA
IOUT=0mA =30mA =100mA
-25
0
25
50
75
100
-50
Operating Temperature Topr ( Ambient Temperature: Ta () )
-25 0 25 50 75 OperatingTemperature: Ta () Ambient Temperature Topr ( )
100
2.70 2.65 2.60 2.55 2.50 2.45 2.40 2.35 2.30 -50
VIN=3.5V VIN1=3.5V CIN1=1.0 F(ceramic), CL1=1.0 (ceramic) CIN=1.0 F (ceramic), CL=1.0 FF(ceramic) 3.20 3.15 Output Voltage VROUT (V) Output Voltage: VROUT V IOUT=0mA =30mA =100mA 3.10 3.05 3.00 2.95 2.90 2.85 2.80 -25 0 25 50 75 Operating Temperature () Ambient Temperature: TaTopr ( ) 100 -50
XC6405 Series =2.5V VROUT (VR:2.5V)
VIN=4.0V VIN1=4.0V CIN1=1.0 (ceramic), CL1=1.0 F(ceramic) CIN=1.0 F F(ceramic),CL=1.0 F (ceramic)
XC6405 VROUT=3.0V Series (VR:3.0V)
Output Voltage VROUT (V) Output Voltage:VROUT V
IOUT=0mA =30mA =100mA
-25
0
25
50
75
100
Operating Temperature Topr ( Ambient Temperature: Ta () )
5.20 5.15 Output Voltage VROUT V Output Voltage: VROUT (V) 5.10 5.05 5.00 4.95 4.90 4.85 4.80 -50
VIN=6.0V VIN1=6.0V CIN1=1.0 F(ceramic), CL1=1.0 (ceramic) CIN=1.0 F (ceramic), CL=1.0 FF(ceramic)
XC6405 Series =5.0V VROUT (VR:5.0V)
IOUT=0mA =30mA =100mA
-25
0
25
50
75
100
Operating Temperature Topr ( Ambient Temperature: Ta () )
27/52
XCM524 Series
TYPICAL PERFORMANCE CHARACTERISTICS (Continued)
6 Supply Current vs. Ambient Temperature VROUT=0.9V
VIN1=2.0V
VROUT=1.8V
VIN1=2.8V
Supply Current: IDD (A)
Ambient Temperature: Ta ()
Supply Current: IDD (A)
Ambient Temperature: Ta ()
VROUT=2.5V
VIN1=3.5V
VROUT=3.0V
VIN1=4.0V
Supply Current: IDD (A)
Ambient Temperature: Ta ()
Supply Current: IDD (A)
Ambient Temperature: Ta ()
VROUT=5.0V
VIN1=6.0V
Supply Current: IDD (A)
Ambient Temperature: Ta ()
28/52
XCM524 Series
TYPICAL PERFORMANCE CHARACTERISTICS (Continued)
7 Rdelay vs. Ambient Temperature 8 Output Noise Density
VIN1=4.0V VIN=4.0V CIN1=1.0 F( IOUT=10mA CL=10uF() ), CL1=1.0 F(ceramic)
Output Noise Density (V/RootHz) -25 0 25 50 75 100
800 700 600 Rdelay (k) 500 400 300 200 100 0 -50
10
1
0.1
0.01 0.1 1 10 100
Frequency: (kHz)
Ambient Temperature: Ta()
9 Detect Voltage, Release Voltage vs. Ambient Temperature VDF=2.0V XC6405 Series (VD:2.0V)
Detect Voltage, Release Voltage: VDF,VDR (V) Detect Voltage, Release Voltage VDF,VDR (V) Detect Voltage, Release Voltage:VDF,VDR(V) Detect Voltage, Release Voltage VDF,VDR V
2.20 2.15 2.10 2.05 2.00 1.95 1.90 -50 -25 0 25 50 75 Operating Temperature Ta ( OC) ) Ambient Temperature:Topr () 100 VDF VDR 2.90 2.85 2.80 2.75 2.70 2.65 2.60 -50 -25 0 25 50 75 100 Operating Temperature Topr ( Ambient Temperature: Ta () ) VDF XC6405 Series (VD:2.7V) VDF=2.7V
VDR
XC6405 Series (VD:3.6V) VDF=3.6V
XC6405 VDF=5.0V Series (VD:5.0V)
Detect Voltage, Release Voltage: VDF,VDR V Detect Voltage, Release Voltage VDF,VDR (V)
3.75 VDR 3.70 3.65 3.60 3.55 3.50 -50 -25 0 25 50 75 100 VDF
Detect Voltage, Release Voltage:VDF,VDR (V) Detect Voltage, Release Voltage VDF,VDR V
3.80
5.40
5.30
5.20
VDR
5.10
5.00 VDF 4.90 -50 -25 0 25 50 75 100
Ambient Temperature: Ta () ) Operating Temperature Topr (
Ambient Temperature: Ta () ) Operating Temperature Topr (
29/52
XCM524 Series
TYPICAL PERFORMANCE CHARACTERISTICS (Continued)
10 VD N-channel Driver Transistor Output Current vs. VDS VDF=2.0V XC6405 Series (VD:2.0V)
8
Ta=25 Topr=25
VDF=2.7V XC6405 Series (VD:2.7V)
16 14
Ta=25
Output Current: IDOUT (mA)
6 5 4 3 2 1 0 0 0.5 1 1.5 VDS (V) VDS (V)
VIN=2.0V
Output Current: IOUT (mA) Output Current IDOUT mA
7
Output Current IOUT mA
12 10 8 6 4 2 0
VIN=2.5V
VIN=2.0V
VIN=1.5V VIN=1.0V 0 0.5 1 1.5 VDS (V) VDS 2 2.5 3
2
2.5
XC6405 Series (VD:3.6V) VDF=3.6V 24 21
Ta=25 Topr=25
XC6405 Series (VD:5.0V) VDF=5.0V 32 28
Ta=25 Topr=25
Output Current:IOUT mA Output Current IDOUT (mA)
Output Current:IOUT mA Output Current IDOUT (mA)
18 15 12 9 6 3 0 0 1 2 VDS(V) VDS (V) VIN=2.0V VIN=1.5V
VIN=3.0V
24 20
VIN=4.5V
VIN=2.5V
VIN=3.5V 16 12 8 4 0 VIN=2.5V VIN=2.0V VIN=1.5V 0 1 2 VDS (V) VDS (V) 3 4
3
4
30/52
XCM524 Series
TYPICAL PERFORMANCE CHARACTERISTICS (Continued)
11 VD N-channel Driver Transistor Output Current vs. Input Voltage
XC6405 Series (VD:2.0V) XC6405 Series (VD:2.7V) VDF=2.7V 15 Output Current: IDOUT (mA) Output Voltage IOUT mA VDS=0.5V 6 25 4 -40 VDS=0.5V 12 9 6 3 85 0 0 0.5 1 1.5 2 2.5 0 1 2 3 4 Input Voltage VIN1 (V) Input Voltage: VIN (V) Input Voltage VIN1 (V) Input Voltage:VIN (V) 25 -40
VDF=2.0V
8
Output Current: IOUT (mA) Output Current IDOUT mA
2
85
0
XC6405 Series (VD:3.6V) VDF=3.6V 20 Output Current IDOUT (mA) Output Current:IOUT mA VDS=0.5V -40 12 25 Output Current IDOUT mA Output Current: IOUT (mA) 20 25
XC6405 Series (VD:5.0V)
VDF=5.0V
16
VDS=0.5V
-40
15
25
8
10
4 85 0 0 1 2 3 4 Input Voltage VIN1 (V) Input Voltage:VIN (V)
5
85
0 0 1 2 3 4 5 6 Input Voltage VIN1 (V) Input Voltage:VIN (V)
31/52
XCM524 Series
TYPICAL PERFORMANCE CHARACTERISTICS (Continued)
12 Input Transient Response VROUT=0.9V
IROUT=1mA, tr=tf=5.0 s CL1=4.7 F(ceramic), Ta=25 Input Voltage
VROUT=0.9V
IROUT=30mA, tr=tf=5.0 s CL1=4.7 F(ceramic), Ta=25 Input Voltage
Output Voltage
Output Voltage: VROUT (V)
Output Voltage
Time (40
s/div)
Time (40
s /div)
VROUT=0.9V
IROUT=100mA, tr=tf=5.0 s CL1=4.7 F(ceramic), Ta=25 Input Voltage
VROUT=1.8V
IROUT=1mA, tr=tf=5.0 s CL1=1.0 F(ceramic), Ta=25
Output Voltage: VROUT (V)
Input Voltage
Output Voltage
Output Voltage
Time (40
s /div)
Time (40
s /div)
VROUT=1.8V
IROUT=30mA, tr=tf=5.0 s CL1=1.0 F(ceramic), Ta=25
VROUT=1.8V
IROUT=100mA, tr=tf=5.0 s CL1=1.0 F(ceramic), Ta=25
Output Voltage:VOUT(V) VROUT (V)
Input Voltage
Input Voltage
Output Voltage
Output Voltage
Time (40
s /div)
Time (40
s /div)
32/52
Output Voltage: VROUT (V)
Input Voltage: VIN1 (V)
Input Voltage: VIN1 (V)
Output Voltage: VROUT (V)
Input Voltage: VIN1 (V)
Input Voltage: VIN1 (V)
Output Voltage: VROUT (V)
Input Voltage: VIN1 (V)
Input Voltage: VIN1 (V)
XCM524 Series
TYPICAL PERFORMANCE CHARACTERISTICS (Continued)
12 Input Transient Response (Continued) VROUT=2.5V XC6405 Series (VR:2.5V) VROUT=2.5V XC6405 Series (VR:2.5V)
6
Input Voltage: VIN1 (V) Input Voltage VIN (V)
IOUT=1mA, tr=tf=5.0 sec, IROUT=1mA, tr=tf=5.0 s CL=1.0 F (ceramic), Topr=25 CL1=1.0 F(ceramic), Ta=25
2.58
Output Voltage VOUT (V) Output Voltage: VROUT (V)
6 5 4 3 2 1 0
IOUT=30mA, tr=tf=5.0 sec, IROUT=30mA, tr=tf=5.0 s CL=1.0 F (ceramic), Topr=25 CL1=1.0 F(ceramic), Ta=25 2.58 2.56 2.54 2.52 2.50 Output Voltage Output Voltage 2.48 2.46 Time (40 s /div) Time(40sec/div)
4 3 2 1 0
Input Voltage Input Voltage
2.54 2.52 2.50
Input Voltage Input Voltage
Output Voltage Output Voltage
2.48 2.46
Time (40 s /div) Time (40sec/div)
VROUT=2.5V XC6405 Series (VR:2.5V)
6 5 IOUT=100mA, tr=tf=5.0 sec, IROUT=100mA, tr=tf=5.0 s CL=1.0 F (ceramic), Topr=25 CL1=1.0 F(ceramic), Ta=25 2.58 2.56 2.54 Input Voltage Input Voltage 3 2 1 0 Time (40 sec/div) Time (40 s /div) 2.52 6 5
VROUT=3.0V XC6405 Series (VR:3.0V) IOUT=1mA, tr=tf=5.0 sec, IROUT=1mA, tr=tf=5.0 s CL=1.0 F (ceramic), Topr=25 CL1=1.0 F(ceramic), Ta=25 3.08
Output Voltage VROUT V Output Voltage: VOUT (V) 3.06 3.04 Input Voltage Input Voltage 3.02 3.00 Output Voltage Output Voltage 2.98 2.96 Time (40 sec/div) Time (40 s /div)
Output Voltage V VOUT(V)V VOUT(V) Output Voltage:VOUT (V) ROUT
Input Voltage: VIN1V(V) Input Voltage VIN
Input Voltage:VIN V Input Voltage VIN1 (V)
4
4 3 2 1 0
Output Voltage Output Voltage
2.50 2.48 2.46
6 5
V Series (VR:3.0V) XC6405ROUT=3.0V IOUT=30mA, tr=tf=5.0 sec, IROUT=30mA, tr=tf=5.0 s CL=1.0 F (ceramic), Topr=25 CL1=1.0 F(ceramic), Ta=25
3.08 3.06 3.04 3.02 3.00
6 5 Output Voltage VOUT V Output Voltage: VROUT (V) Input Voltage VIN1 (V) Input Voltage:VIN V 4
VROUT=3.0V XC6405 Series (VR:3.0V) IROUT=100mA, tr=tf=5.0 s IOUT=100mA, tr=tf=5.0 sec, CL1=1.0 F(ceramic), Ta=25 CL=1.0 F (ceramic), Topr=25
3.08 3.06 3.04 Output Voltage VOUT V Output Voltage: VROUT (V)
Input Voltage: VIN (V) Input Voltage VIN1 V
4 3 2 1 0
InputInput Voltage Voltage
Input Voltage Input Voltage 3 2 1 0 Time (40 s /div) Time(40 sec/div) Output Voltage Output Voltage 3.02 3.00 2.98 2.96
Output Voltage Output Voltage
2.98 2.96
Time (40 sec/div) Time(40 sec/div) s /div)
33/52
Output Voltage VOUT (V) Output Voltage: VROUT ( V )
Input Voltage: VIN1 (V) Input Voltage VIN ( V )
5
2.56
XCM524 Series
TYPICAL PERFORMANCE CHARACTERISTICS (Continued)
12 Input Transient Response (Continued) VROUT=5.0V XC6405 Series (VR:5.0V)
8 IOUT=1mA, tr=tf=5.0 sec, IROUT=1mA, tr=tf=5.0 s CL=1.0 F (ceramic), Topr=25 CL1=1.0 F(ceramic), Ta=25 Input Voltage Input Voltage 5.08 Output Voltage VROUT V Output Voltage: VOUT (V) VOUT(V) 5.06 5.04 5.02 5.00 4.98 4.96 Time (40 sec/div) Time (40 s /div) 8 XC6405 Series (VR:5.0V) VROUT=5.0V IOUT=30mA, tr=tf=5.0 sec, IROUT=30mA, tr=tf=5.0 s CL=1.0 F (ceramic), Topr=25 CL1=1.0 F(ceramic), Ta=25 5.08 Output Voltage Output Voltage: VOUT (V) VROUT V 5.06 5.04 5.02 Output Voltage Output Voltage 5.00 4.98 4.96
Input Voltage: VIN1 (V) Input Voltage VIN V
7 6 5 4 3 2
Input Voltage: VIN (V) VIN(V) Input Voltage VIN1 (V)
7 6 5 4 3 2
Input Voltage Input Voltage
Output Voltage Output Voltage
Time(40 sec/div) (40 s /div) Time (40 sec/div)
V Series (VR:5.0V) XC6405ROUT=5.0V
8 7 6 5 4 3 2 IOUT=100mA, tr=tf=5.0 sec,s IROUT=100mA, tr=tf=5.0 CL=1.0 F (ceramic), Topr=25 CL1=1.0 F(ceramic), Ta=25 5.08 Output Voltage VROUT (V) VOUT VOUT(V) Output Voltage:VOUT(V)V 5.06 5.04 5.02 5.00 4.98 4.96
Input Voltage:VIN V Input Voltage VIN1 (V)
Input Voltage Input Voltage
Output Voltage Output Voltage
Time (40 s /div) Time (40 sec/div)
34/52
XCM524 Series
TYPICAL PERFORMANCE CHARACTERISTICS (Continued)
13 Load Transient Response VROUT=0.9V
VIN1=2.0V, tr=tf=5.0 s, Ta=25 CIN1=1.0 F(ceramic), CL1=4.7 F(ceramic)
VROUT=0.9V
VIN1=2.0V, tr=tf=5.0 s, Ta=25 CIN1=1.0 F(ceramic), CL1=4.7 F(ceramic)
Output Current: IROUT (mA)
Output Voltage: VROUT (V)
Output Current
Output Current
Time (20
s /div)
Time (20
s /div)
VROUT=0.9V
VIN1=2.0V, tr=tf=5.0 sec, Ta=25 CIN1=1.0 F(ceramic), CL1=4.7 F(ceramic)
VROUT=1.8V
VIN1=2.8V, tr=tf=5.0 s CIN1=CL1=1.0 F(ceramic), Ta=25 Output Voltage
VOUT (V) Output Current: IROUT (mA)
VIN(V) Output Voltage: VROUT (V)
Output Voltage: VROUT (V)
Output Current
Output Current
(20 sec/div) (40 Time (20 sec/div) s /div)
Time (20
s /div)
VROUT=1.8V
VIN1=2.8V, tr=tf=5.0 s CIN1=CL1=1.0 F(ceramic), Ta=25 Output Voltage
VROUT=1.8V
VIN1=2.8V, tr=tf=5.0 s CIN1=CL1=1.0 F(ceramic), Ta=25 Output Voltage
Output Voltage: VROUT (V)
Output Current: IROUT (mA)
Output Voltage: VROUT (V)
Output Current
Output Current
Time (20
s /div)
Time (20
s /div)
35/52
Output Current: IROUT (mA)
Output Current: IROUT (mA)
Output Voltage
Output Current: IROUT (mA)
Output Voltage: VROUT (V) VIN(V)
Output Voltage
Output Voltage
XCM524 Series
TYPICAL PERFORMANCE CHARACTERISTICS (Continued)
13 Load Transient Response (Continued) V Series (VR:2.5V) XC6405ROUT=2.5V VIN1=3.5V, tr=tf=5.0 s VIN=2.5V, tr=tf=5.0 sec CIN1=CL1=1.0 F(ceramic), Ta=25 CIN=CL=1.0 F (ceramic), Topr=25
Output Voltage Output Voltage 2.50 2.45 2.40 2.35 2.30 200 150 100 50 0
2.55
250 Output Current IOUT mA Output Current: IROUT (mA)
2.55
VROUT=2.5V XC6405 Series (VR:2.5V) VIN1=3.5V, tr=tf=5.0 s VIN=2.5V, tr=tf=5.0 sec CIN1=CL1=1.0 F(ceramic), Ta=25 CIN=CL=1.0 F (ceramic), Topr=25
Output Voltage Output Voltage
250 Output Current IROUT (mA) Output Current: IOUT mA
Output Voltage:VOUT V Output Voltage VROUT (V)
Output Voltage: VROUTV Output Voltage VOUT (V)
2.50
200
2.45
150
Output Current Output Current
2.40 Output Current Output Current
100
2.35
50
Time (20 s /div) Time (20 sec/div)
2.30 Time (20
0
Time (20
sec/div)
s /div)
XC6405 Series (VR:2.5V) VROUT=2.5V
2.55
VIN1=3.5V, tr=tf=5.0 s VIN=2.5V, tr=tf=5.0 sec CIN1=CL1=1.0 F(ceramic), Ta=25 CIN=CL=1.0 F (ceramic), Topr=25
Output Voltage Output Voltage
250
3.05
XC6405VROUT=3.0V Series (VR:3.0V) VIN=4.0V, tr=tf=5.0 sec VIN1=4.0V, tr=tf=5.0 s CIN1=CL1=1.0 (ceramic), Topr=25 CIN=CL=1.0 F F(ceramic), Ta=25
250
Output Voltage Output Voltage
Output Current ROUT (mA) Output Current: IIOUT (mA) 200 Output Current: IROUT (mA) OutputCurrent IOUT mA
Output Voltage: VROUT (V) Output Voltage VOUT (V)
2.50
Output Voltage: VOUT (V) Output Voltage VROUT V
3.00
200
2.45
150
2.95
150
2.40 Output Current Output Current
100
2.90
Output Current Output Current
100
2.35
50
2.85
50
2.30 Time (20 s /div) Time(20sec/div)
0
2.80 Time (20 s /div) Time (20 sec/div)
0
VROUT=3.0V XC6405 Series (VR:3.0V)
3.05 3.00 2.95 VIN=4.0V, tr=tf=5.0 sec VIN1=4.0V, tr=tf=5.0 s CIN1=CL1=1.0 F(ceramic), Ta=25 CIN=CL=1.0 F (ceramic), Topr=25 Output Voltage Output Voltage 250 3.05
VROUT=3.0V XC6405 Series (VR:3.0V) VIN1=4.0V, tr=tf=5.0 s VIN=4.0V, tr=tf=5.0 sec CIN1=CL1=1.0 F(ceramic), Ta=25 CIN=CL=1.0 F (ceramic), Topr=25
Output Voltage Output Voltage
250
Output Current: IOUT (mA) Output Current IROUT (mA)
Output Voltage: VVOUT(V) Output Voltage ROUT (V)
200 150
2.95
150
2.90 2.85 2.80 Output Current Output Current
100 50 0
2.90
100
2.85
Output Current Output Current
50
2.80
0
Time(20sec/div) Time (20 s /div)
Time (20 s /div) Time (20 sec/div)
36/52
Output Current: IIOUT(mA) Output Current ROUT mA
Output Voltage:VOUT V Output Voltage VROUT (V)
3.00
200
XCM524 Series
TYPICAL PERFORMANCE CHARACTERISTICS (Continued)
13 Load Transient Response (Continued) VROUT=5.0V
VIN1=6.0V, tr=tf=5.0 s CIN1=CL1=1.0 F(ceramic), Ta=25 Output Voltage
VROUT=5.0V
VIN1=6.0V, tr=tf=5.0 s CIN1=CL1=1.0 F(ceramic), Ta=25
Output Voltage
Output Current: IROUT (mA)
Output Current
Output Current
Time (20
s /div)
Time (20
s /div)
VROUT=5.0V
VIN1=6.0V, tr=tf=5.0 s CIN1=CL1=1.0 F(ceramic), Ta=25 Output Voltage
Output Voltage: VROUT (V)
Output Current
Time (20
s /div)
Output Current: IROUT (mA)
37/52
Output Current: IROUT (mA)
Output Voltage: VROUT (V)
Output Voltage: VROUT (V)
XCM524 Series
TYPICAL PERFORMANCE CHARACTERISTICS (Continued)
14 Ripple Rejection Rate VROUT=0.9V
90 80 ratio: RR ( ripple rejection RR (dB) 70 60 50 40 30 20 10 0 0.01 10 f (kHz) f (kHz) Ripple Frequency: f (kHz) 0.1 1 100
ripple rejection ratio: RR (dB) RR (
VIN1=2.25VDC+0.5Vp-pAC VIN=2.5V DC+0.5Vp-PAC IROUT=50mA, CL1=1.0 F(ceramic) IOUT=50mA CL=4.7F
VROUT=1.8V
90 80 70 60 50 40 30 20 10 0 0.01 0.1 10 f (kHz) f f (kHz) Ripple Frequency:(kHz) 1 100
VIN1=2.8VDC+1.0Vp-pAC VIN=2.8V DC+0.5Vp-PAC IROUT=50mA, CL1=1.0 F(ceramic) IOUT=50mA CL=1.0F
VROUT=2.5V
VIN1=3.5VDC+1.0Vp-pAC VIN=3.5V DC+0.5Vp-PAC IROUT=50mA, CL1=1.0 F(ceramic)
IOUT=50mA CL=1.0F
VROUT=3.0V
VIN1=4.0VDC+1.0Vp-pAC VIN=4.0V DC+0.5Vp-PAC IROUT=50mA, CL1CL=1.0F IOUT=50mA =1.0 F(ceramic)
90 80
ripple rejection ratio: RR (dB) RR (
90
ripple rejection ratio: RR ( RR (dB)
80 70 60 50 40 30 20 10 0 0.01 0.1 1
f (kHz) 10
70 60 50 40 30 20 10 0 0.01
f (kHz) 0.1 1 10 ff(kHz) Ripple Frequency: (kHz)
100
100
(kHz) Ripple Frequency: ff (kHz)
VROUT=5.0V
VIN1=5.75VDC+0.5Vp-pAC VIN=5.75V DC+0.5Vp-PAC IROUT=50mA, CL1=1.0 F(ceramic) IOUT=50mA CL=1.0F
90 80
ripple rejection ratio: RR ( RR (dB)
70 60 50 40 30 20 10 0 0.01
f (kHz) 0.1 1 10 f (kHz) Ripple Frequency: f (kHz)
100
38/52
XCM524 Series
TYPICAL PERFORMANCE CHARACTERISTICS (Continued)
15 Input Voltage Rising Response Time
VROUT=0.9V
4
IROUT=1mA, tr= 5.0 s VIN1=0 2.0V, CL1=4.7 F(ceramic)
VROUT=0.9V
5
4
IROUT=30mA, tr= 5.0 s VIN1=0 2.0V, CL1=4.7 F(ceramic)
5 4
Output Voltage: VROUT (V)
2
Inpit Voltage
4 3 2
Output Voltage
2
Inpit Voltage
0 -2 -4 -6
0 -2
Output Voltage
3 2 1 0
1 0
-4 -6
Time (20
s/div)
Time (20
s/div)
VROUT=0.9V
4
IROUT=100mA, tr= 5.0 s VIN1=0 2.0V, CL1=4.7 F(ceramic)
VROUT=1.8V
IROUT=1mA, tr= 5.0 s VIN1=0 2.8V, CL1=1.0 F(ceramic)
5
4
5 4
Output Voltage: VROUT (V)
2 0 -2 -4 -6
Output Voltage Inpit Voltage
4 3 2 1 0
2
Inpit Voltage
0 -2 -4 -6
3 2 1 0
Output Voltage
Time (20
s/div)
Time (20
s/div)
VROUT=1.8V
IROUT=30mA, tr= 5.0 s VIN1=0 2.8V, CL1=1.0 F(ceramic)
VROUT=1.8V
5
IROUT=100mA, tr= 5.0 s VIN1=0 2.8V, CL1=1.0 F(ceramic)
4
4
5 4
Inpit Voltage
Output Voltage: VROUT (V)
2 0 -2 -4 -6
Inpit Voltage
4 3 2
2 0 -2 -4 -6
3 2 1 0
Output Voltage
1 0
Output Voltage
Time (20
s/div)
Time (20
s/div)
Output Voltage: VROUT (V)
Input Voltage: VIN1 (V)
Input Voltage: VIN1 (V)
Output Voltage: VROUT (V)
Input Voltage: VIN1 (V)
Input Voltage: VIN1 (V)
Output Voltage: VROUT (V)
Input Voltage: VIN1 (V)
Input Voltage: VIN1 (V)
39/52
XCM524 Series
TYPICAL PERFORMANCE CHARACTERISTICS (Continued)
15 Input Voltage Rising Response Time (Continued)
XC6405 Series (VR:2.5V)
VROUT=2.5V
XC6405 Series =2.5V VROUT (VR:2.5V) IOUT=30mA, tr=5.0 sec IROUT=30mA, tr= 5.0 s VIN=0 3.5V, CL=4.7 F (ceramic) VIN1=0 3.5V, CL1=1.0 F(ceramic)
5
IOUT=1mA, tr=5.0 sec IROUT=1mA, tr= 5.0 s VIN=0 3.5V, CL=4.7 F(ceramic) VIN1=0 3.5V, CL1=1.0 F (ceramic)
5 Output Voltage VOUT V Output Voltage: VROUT (V) 4
5 3
5 4 Output Voltage VROUT (V) Output Voltage:VOUT V
Input Voltage: VIN (V) Input Voltage VIN1 (V)
Input Voltage Inpit Voltage 1 -1 -3 -5 Time (20 sec/div) Time (20 s/div) Output Voltage Output Voltage 3 2 1 0
Input Voltage VIN (V) Input Voltage: VIN1 (V)
3
Input Voltage Inpit Voltage 1 -1 -3 -5 Time (20 sec/div) Time (20 s/div) Output Voltage Output Voltage 3 2 1 0
XC6405 ROUT=2.5V VSeries (VR:2.5V) IOUT=100mA, tr=5.0 sec IROUT=100mA, tr= 5.0 s VIN=0 3.5V, CL=4.7 F(ceramic) VIN1=0 3.5V, CL1=1.0 F (ceramic) 5
XC6405 ROUT=3.0V V Series (VR:3.0V)
IROUT=1mA, tr= sec IOUT=1mA, tr=5.05.0 s VIN=0 4.0V, CL=1.0 F (ceramic) VIN1=0 CL1=1.0 F(ceramic)
5 Input Voltage (V) Input Voltage: VVIN(V) IN1 3
5
5 4 3 2 1 0
Output Voltage: VOUT (V) Output Voltage VROUT V
Input Voltage V (V) Input Voltage: VIN (V) IN1
4 Input Voltage Inpit Voltage 3 2 Output Voltage Output Voltage 1 0 Time (20(20 s/div) Time sec/div)
3 1 -1 -3 -5
Input Voltage Inpit Voltage
1 -1 -3 -5
Output Voltage Output Voltage
Time (20 sec/div) Time (20 s/div)
XC6405 VROUT=3.0V Series (VR:3.0V) IOUT=30mA, tr=5.0 sec IROUT=30mA, tr= 5.0 s 4.0V, CL=1.0 F (ceramic) VVIN=0 4.0V, CL1=1.0 F(ceramic) IN1=0
XC6405V Series (VR:3.0V) =3.0V
ROUT
5 Input Voltage VIN1 V Input Voltage: VIN (V) 3 1 -1 -3 -5
5
5
IOUT=100mA, tr=5.0 sec IROUT=100mA, tr= 5.0 s 4.0V, CL=1.0 F (ceramic) VVIN=0 4.0V, CL1=1.0 F(ceramic) IN1=0
5
Output Voltage: VROUT (V) Output Voltage VOUT V
Input Voltage VIN1 (V) Input Voltage: VIN V
Input Voltage Inpit Voltage
Input Voltage Inpit Voltage
3 Output Voltage Output Voltage 2 1 0 Time (20 sec/div) Time (20 s/div)
1 -1 Output Voltage Output Voltage -3 -5 Time (20 sec/div) Time (20 s/div)
3 2 1 0
40/52
Output Voltage: VROUT (V) Output Voltage VOUT V
4
3
4
Output Voltage: VROUT (V) Output Voltage VOUT V
XCM524 Series
TYPICAL PERFORMANCE CHARACTERISTICS (Continued)
15 Input Voltage Rising Response Time (Continued)
XC6405 Series (VR:5.0V) VROUT=5.0V 7 5 3 1 -1 -3 Time (20 sec/div) Time (20 s/div) IOUT=1mA, tr=5.0 5.0 s IROUT=1mA, tr= sec VIN=0 6.0V, CL=1.0 FF(ceramic) VIN1=0 6.0V, CL1=1.0 (ceramic) 10 8 6 4 2 0 Output Voltage VROUT (V) Output Voltage:VOUT V 7 5 3 1 -1 Output Voltage Output Voltage -3 Time (20 sec/div) Time (20 s/div) 0 XC6405 Series (VR:5.0V) VROUT=5.0V IOUT=30mA, tr=5.0 sec IROUT=30mA, tr= 5.0 s VIN=0 6.0V, CL=1.0 F(ceramic) VIN1=0 6.0V, CL1=1.0 F (ceramic) 10 8 6 4 2
Output Voltage
XC6405 Series (VR:5.0V) VROUT=5.0V IOUT=100mA, tr=5.0 5.0 s IROUT=100mA, tr= sec VIN=0 6.0V, CL=1.0 FF(ceramic) VIN1=0 6.0V, CL1=1.0 (ceramic)
7 5 3 1 -1 -3
10 8 6 4 2 0 Output Voltage V V Output Voltage:VOUT (V) ROUT
Input Voltage:VIN V Input Voltage VIN1 (V)
Input Voltage Inpit Voltage
Output Voltage Output Voltage
Time (20(20 s/div) Time sec/div)
Input Voltage VIN1 V Input Voltage: VIN (V)
Input Voltage Inpit Voltage
Input Voltage Inpit
41/52
Output Voltage: VOUT (V) Output Voltage VROUT V
Input Voltage:VIN V Input Voltage VIN1 (V)
XCM524 Series
TYPICAL PERFORMANCE CHARACTERISTICS (Continued)
2ch:DC/DC Convertor Block
(1) Efficiency vs. Output Current
VDCOUT=1.8V, fOSC=1.2MHz
100 PWM/PFM Automatic Sw itching Control 90 Efficency:EFFI (%) 80 70 60 50 40 30 20 10 0 0.1 1 10 100 1000 Output Current: IOUT2 (mA) 3.6V PWM Control V IN2= 4.2V 3.6V V IN2= 4.2V
L=4.7H(NR4018) CIN2=4.7F CL2 =10F
VDCOUT=1.8V, fOSC=3.0MHz
100 90 Efficency: EFFI (%) 80 70 60 50 40 30 20 10 0 0.1 1 10 100 1000 Output Current: IOUT 2 (mA)
L=1.5H(NR3015) CIN2=4.7F CL2 =10F
PWM/PFM Automatic Sw itching Control
V IN2= 4.2V 3.6V PWM Control V IN2= 4.2V 3.6V
(2) Output Voltage vs. Output Current
VDCOUT=1.8V, fOSC=1.2MHz
2.1 Output Voltage: V DCOUT (V) 2.0 1.9 1.8 1.7 1.6 1.5 0.1 1 10 100 1000 Output Current: IOUT2 (mA) PWM Control
L=4.7H(NR4018) CIN2=4.7F CL2 =10F
VDCOUT=1.8V, fOSC=3.0MHz
2.1 Output Voltage: V DCOUT (V) 2.0 1.9 1.8 1.7 PWM Control 1.6 1.5 0.1 1 10 100 1000 Output Current: IOUT2 (mA) PWM/PFM Automatic Sw itching Control V IN24.2V,3.6V
L=1.5H(NR3015) CIN2 =4.7F CL2=10F
PWM/PFM Automatic Sw itching Control V IN24.2V,3.6V
(3) Ripple Voltage vs. Output Current
VDCOUT=1.8V, fOSC=1.2MHz
100 Ripple Voltage: Vr (mV) 80 60 40 20 0 0.1 1 10 100 1000 Output Current: IOUT2 (mA) PWM Control V IN24.2V,3.6V PWM/PFM Automatic Sw itching Control V IN24.2V 3.6V
L=4.7H(NR4018) CIN2=4.7F CL2 =10F
VDCOUT=1.8V, fOSC=3.0MHz
100 Ripple Voltage: Vr (mV) 80 60 40 20 0 0.1 1 10 100 1000 Output Current: IOUT 2 (mA) PWM/PFM Automatic PWM Control V IN24.2V,3.6V Sw itching Control V IN24.2V 3.6V
L=1.5H(NR3015) CIN2 =4.7F CL2=10F
42/52
XCM524 Series
TYPICAL PERFORMANCE CHARACTERISTICS (Continued)
(4) Oscillation Frequency vs. Ambient Temperature
VDCOUT=1.8V, fOSC=1.2MHz
Oscillation Frequency: fOSC (MHz) Oscillation Frequency: fOSC (MHz) 1.5 1.4 1.3 1.2 1.1 1.0 0.9 0.8 -50 -25 0 25 50 75 100 Ambient Temperature: Ta ( ) V IN2=3.6V
L=4.7H(NR4018) CIN2=4.7F CL2 =10F
VDCOUT=1.8V, fOSC=3.0MHz
3.5 3.4 3.3 3.2 3.1 3.0 2.9 2.8 2.7 2.6 2.5 -50 -25 0 25 50 75 100
L=1.5H(NR3015) CIN2 =4.7F CL2=10F
V IN2=3.6V
Ambient Temperature: Ta ( )
(5) Supply Current vs. Ambient Temperature
VDCOUT=1.8V, fOSC=1.2MHz
40 Supply Current: IDD (A) Supply Current: IDD (A) 35 30 25 20 15 10 5 0 -50 -25 0 25 50 75 100 V IN2=4.0V V IN2=6.0V 40 35 30 25 20 15 10 5 0 -50 -25 0 25 50 75 100 V IN2=4.0V V IN2=6.0V
VDCOUT=1.8V, fOSC=3.0MHz
Ambient Temperature: Ta ()
Ambient Temperature: Ta ()
(6) Output Voltage vs. Ambient Temperature
VDCOUT=1.8V, fOSC=3.0MHz
2.1 Output Voltage: V DCOUT (V) UVLO Voltage: UVLO (V) 2.0 1.9 1.8 1.7 1.6 1.5 -50 -25 0 25 50 75 100 Ambient Temperature: Ta ( ) V IN2=3.6V 1.8 1.5 1.2 0.9 0.6 0.3 0.0
(7) UVLO Voltage vs. Ambient Temperature
VDCOUT=1.8V, fOSC=3.0MHz
EN2=V IN2
-50
-25
0
25
50
75
100
Ambient Temperature: Ta ()
43/52
XCM524 Series
TYPICAL PERFORMANCE CHARACTERISTICS (Continued)
(8) EN "H" Voltage vs. Ambient Temperature
VDCOUT=1.8V, fOSC=3.0MHz
1.0 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0.0 -50 -25 0 25 50 75 100 Ambient Temperature: Ta () EN "L" Voltage: VENL (V) V IN2=5.0V 1.0 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0.0 -50 -25 0 25 50 75 100 Ambient Temperature: Ta () V IN2=3.6V V IN2=5.0V
(9) EN" L" Voltage vs. Ambient Temperature
VDCOUT=1.8V, fOSC=3.0MHz
EN "H" Voltage: VENH (V)
V IN2=3.6V
(10) Soft Start Time vs. Ambient Temperature
VDCOUT=1.8V, fOSC=1.2MHz
5 Soft Start Time: tSS (ms) 4 3 2 V IN2=3.6V 1 0 -50
L=4.7H(NR4018) CIN2 =4.7F CL2=10F
VDCOUT=1.8V, fOSC=3.0MHz
5 Soft Start Time: tSS (ms) 4 3 2 V IN2=3.6V 1 0 -50
L=1.5H(NR3015) CIN2 =4.7F CL2=10F
-25
0
25
50
75
100
-25
0
25
50
75
100
Ambient Temperature: Ta ()
Ambient Temperature: Ta ()
(11) "P-channel/N-channel" Driver on Resistance vs. Input Voltage
VDCOUT=1.8V, fOSC=3.0MHz
Lx SW ON Resistance: R ,RLxL () LxH 1.0 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0.0 0 1 2 3 4 5 6 Input Voltage: V IN2 (V) Pch on Resistance
Nch on Resistance
44/52
XCM524 Series
TYPICAL PERFORMANCE CHARACTERISTICS (Continued)
(12) XCM524xC/ XCM524xD Series
VDCOUT=1.2V, fOSC=1.2MHz
L=4.7H(NR4018) CIN2=4.7F CL2=10F
Rise Wave Form
VDCOUT=3.3V, fOSC=3.0MHz
L=1.5H(NR3015) CIN2=4.7F CL2=10F
VIN2=5.0V IOUT2=1.0mA
VIN2=5.0V IOUT2=1.0mA
VDCOUT:0.5V/div
VDCOUT:1.0V/div
EN2:0.0V
1.0V
EN2:0.0V
1.0V
100s/div
100s/div
(13) XCM524xC/ XCM524xD Series
VDCOUT=1.2V, fOSC=1.2MHz
500 Soft Start Time: tSS (s) 400 300 200 100 0 -50 V IN2=5.0V IOUT 2=1.0mA -25 0 25 50 75
Soft-Start Time vs. Ambient Temperature
VDCOUT=3.3V, fOSC=3.0MHz
500 Soft Start Time: tSS (s) 400 300 200 100 0 -50 V IN2=5.0V IOUT2=1.0mA -25 0 25 50 75 100
L=1.5H(NR3015) CIN2=4.7F CL2 =10F
L=4.7H(NR4018) CIN2=4.7F CL2 =10F
100
Ambient Temperature: Ta ()
Ambient Temperature: Ta ()
(14) XCM524xC/ XCM524xD Series
VDCOUT=3.3V, fOSC=3.0MHz
CL Discharge Resistance: Rdischg()
CL Discharge Resistance vs. Ambient Temperature
600 VIN2=6.0V 500 400 300 200 100 -50 VIN2=4.0V
-25
0
25
50
75
100
Ambient Temperature: Ta ( )
45/52
XCM524 Series
TYPICAL PERFORMANCE CHARACTERISTICS (Continued)
(15) Load Transient Response VDCOUT=1.2V, fOSC=1.2MHz(PWM/PFM Automatic Switching Control)
L=4.7 H(NR4018), CIN2=4.7 F(ceramic), CL2=10 F(ceramic), Ta=25 VIN2=3.6V, EN2=VIN2
IOUT2=1mA
100mA 1ch : IOUT2
IOUT2=1mA
300mA 1ch : IOUT2
2ch: VDCOUT (50mV/div)
2ch: VDCOUT (50mV/div)
50s/div
50s/div
IOUT2=100mA
1mA
IOUT2=300mA
1mA
1ch : IOUT2
1ch : IOUT2
2ch: VDCOUT (50mV/div) 200s/div
2ch: VDCOUT (50mV/div) 200s/div
46/52
XCM524 Series
TYPICAL PERFORMANCE CHARACTERISTICS (Continued)
(15) Load Transient Response (Continued) VDCOUT=1.2V, fOSC=1.2MHz (PWM Control)
L=4.7 H(NR4018), CIN2=4.7 F(ceramic), CL2=10 F(ceramic), Ta=25 VIN2=3.6V, EN2=VIN2
IOUT2=1mA
100mA 1ch : IOUT2
IOUT2=1mA
300mA 1ch : IOUT2
2ch: VDCOUT (50mV/div)
2ch: VDCOUT (50mV/div)
50s/div
50s/div
IOUT2=100mA
1mA
IOUT2=300mA
1mA
1ch : IOUT2
1ch : IOUT2
2ch: VDCOUT (50mV/div) 200s/div
2ch: VDCOUT (50mV/div) 200s/div
47/52
XCM524 Series
TYPICAL PERFORMANCE CHARACTERISTICS (Continued)
(15) Load Transient Response (Continued) VDCOUT=1.8V, fOSC=3.0MHz (PWM/PFM Automatic Switching Control)
L=1.5 H(NR3015), CIN2=4.7 F(ceramic), CL2=10 F(ceramic),Ta=25 VIN2=3.6V, EN=VIN2
IOUT2=1mA
100mA 1ch : IOUT2
IOUT2=1mA
300mA 1ch : IOUT2
2ch: VDCOUT (50mV/div)
2ch: VDCOUT (50mV/div)
50s/div
50s/div
IOUT2=100mA
1mA
IOUT2=300mA
1mA
1ch : IOUT2
1ch : IOUT2
2ch: VDCOUT (50mV/div) 200s/div
2ch: VDCOUT (50mV/div) 200s/div
48/52
XCM524 Series
TYPICAL PERFORMANCE CHARACTERISTICS (Continued)
(15) Load Transient Response (Continued) VDCOUT=1.8V, fOSC=3.0MHz (PWM Control)
L=1.5 H(NR3015), CIN2=4.7 F(ceramic), CL2=10 F(ceramic), Ta=25 VIN2=3.6V, EN2=VIN2
IOUT2=1mA
100mA 1ch : IOUT2
IOUT2=1mA
300mA 1ch : IOUT2
2ch: VDCOUT (50mV/div)
2ch: VDCOUT (50mV/div)
50s/div
50s/div
IOUT2=100mA
1mA
IOUT2=300mA
1mA
1ch : IOUT2
1ch : IOUT2
2ch: VDCOUT (50mV/div) 200s/div
2ch: VDCOUT (50mV/div) 200s/div
49/52
XCM524 Series
PACKAGING INFORMATION
USP-12B01
2.80.08
MAX0.6
2.30.08
(0.4) (0.4) (0.4) (0.4) (0.4) (0.15) (0.25)
0.25 0.2 0.2 0.2 0.2 0.2 0.05 0.05 0.05 0.05 0.05 0.05
0.250.1
1
2
3
4
5
6
0.250.1
1.30.1
12 11 10 9
1.20.1
1.20.1
8
7
0.70.05 0.70.05
USP-12B01 Reference Pattern Layout
1 .35 1 .35 0 .90 0 .90 0 .45 0 .65 0 .65 0 .25 0 .25
0.40.1
USP-12B01 Reference Metal Mask Design
1 .30 1 .30 0 .95 0 .95 0 .55 0 .55 0 .25 0 .25
0 .45
0 .35
0 .35
1 .05 0 .95 0 .65 0 .55 0 .25 0 .15 0 .25 0 .30 0 .025 0 .025 0 .025 0 .025
1 .05 0 .95 0 .65 0 .55 0 .25 0 .15 0 .05 0 .15 0 .05 0 .05 0 .20 0 .05
1 .30 1 .60
0 .10 0 .10
0 .20
0 .50
0 .20
1 .30 1 .60
0 .15
0 .40
0 .15
50/52
0 .60 1 .10 1 .55
0 .60 1 .10 1 .55
XCM524 Series
PACKAGING INFORMATION (Continued)
USP-12B01 Power Dissipation Power dissipation data for the USP-12B01 is shown in this page. The value of power dissipation varies with the mount board conditions. Please use this data as one of reference data taken in the described condition.
1.
Measurement Condition (Reference data)
Condition: Ambient: Soldering: Board:
st nd rd th
Mount on a board Natural convection Lead (Pb) free Dimensions 40 x 40 mm (1600 mm in one side)
st 2
1 Layer: Land and a wiring pattern 2 Layer: Connecting to approximate 50% of the 1 heat sink 3 Layer: Connecting to approximate 50% of the 2 4 Layer: Noting Material: Thickness: Glass Epoxy (FR-4) 1.6 mm
nd
heat sink
Through-hole: 2 x 0.8 Diameter (each TAB needs one through-hole)
2.
Power Dissipation vs. Ambient Temperature
Only 1ch heating, Board Mount (Tj max = 125 )
Evaluation Board (Unit: mm)
Ambient Temperature 25 85
Power Dissipation PdmW 800 320
Pd-Ta Pd vs. Ta
Thermal Resistance (/W) 125.00
Power Dissipation: Pd (mW) PdmW
1000 800 600 400 200 0 25 45 65 85 105 125 Ta Ambient Temperature: Ta ( )
Both 2ch heating same time, Board Mount (Tj max = 125
)
Ambient Temperature 25 85
Power Dissipation PdmW 600 240
Pd-Ta Pd vs. Ta
Thermal Resistance (/W) 166.67
PowerPdmW Dissipation: Pd (mW)
1000 800 600 400 200 0 25 45 65 85 Ta Ambient Temperature: Ta ( ) 105 125
51/52
XCM524 Series
1. The products and product specifications contained herein are subject to change without notice to improve performance characteristics. Consult us, or our representatives before use, to confirm that the information in this datasheet is up to date. 2. We assume no responsibility for any infringement of patents, patent rights, or other rights arising from the use of any information and circuitry in this datasheet. 3. Please ensure suitable shipping controls (including fail-safe designs and aging protection) are in force for equipment employing products listed in this datasheet. 4. The products in this datasheet are not developed, designed, or approved for use with such equipment whose failure of malfunction can be reasonably expected to directly endanger the life of, or cause significant injury to, the user. (e.g. Atomic energy; aerospace; transport; combustion and associated safety equipment thereof.) 5. Please use the products listed in this datasheet within the specified ranges. Should you wish to use the products under conditions exceeding the specifications, please consult us or our representatives. 6. We assume no responsibility for damage or loss due to abnormal use. 7. All rights reserved. No part of this datasheet may be copied or reproduced without the prior permission of TOREX SEMICONDUCTOR LTD.
52/52


▲Up To Search▲   

 
Price & Availability of XCM524BC01DR-G

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X